Simulation of climate change in Iran during 2071-2100 using PRECIS regional climate modelling system (original) (raw)

Prediction of Climate Change Induced Temperature & Precipitation: The Case of Iran

Sustainability, 2017

Concern about the effects of climatic change on numerous aspects of human life in general and on agricultural production in particular is growing. The utility of HadCM3 as a tool in climate change predictions in cross cultural studies is scarce. Therefore, this study sought to investigate and predict climate change induced temperature and precipitation in Iran. The calibration and validation using the HadCM3 was performed during 1961-2001, using daily temperatures and precipitation. The data on temperature and precipitation from 1961 to 1990 were used for calibration, and, for model validation, data from 1991 to 2001 were used. Moreover, in order to downscale general circulation models to station scales, SDSM version 4.2 was utilized. The least difference between observed data and simulation data during calibration and validation showed that the parameter was precisely modeled for most of the year. Simulation under the A2 scenario was performed for three time periods (2020, 2050, and 2080). According to our simulated model, precipitation showed a decreasing trend whereas temperature showed an increasing trend. The result of this research paper makes a significant contribution to climate smart agriculture in Iran. For example, rural development practitioners can devise effective policies and programs in order to reduce the vulnerability of local communities to climate change impacts. Moreover, the result of this study can be used as an optimal model for land allocation in agriculture. Moreover, a shortage of rainfall and decreased temperatures also have implications for agricultural land allocation.

Determination of Crisis Areas of Precipitation in Iran for Period of 2021-2040 by Climate Change

University of Tehran, Faculty of Agricultural Technology, University College of Agriculture & Natural Resources, 2023

The climate change effect on future precipitation (2040-2021) of Iran is investigated in this study. For this purpose, the results of three general circulation models (GCM) named GFDL-ESM2M, HadGEM2-ES and IPSL-CM5A-LR were analyzed for two scenarios of greenhouse gas emissions RCP2.6 and RCP8.5. CCT model and daily precipitation data of the base period (1986-2019) were used to downscale and bias correction of future daily precipitation data. According to the annual results, the weighted average of annual precipitation of rain gauges due to all scenarios except RCP8.5 in the IPSL-CM5A-LR model was increasing. The weighted average of seasonal precipitation in winter increased in all of the studied climate change conditions, but in other seasons the amount of precipitation decreased or increased. The highest increase in the weighted average of seasonal precipitation was in winter due to the RCP2.6 scenario and GFDL-ESM2M model (23 mm). The highest decrease in the weighted average of seasonal precipitation was in autumn due to the RSP8.5 scenario and IPSL-CM5A-LR (10.5 mm). Slight changes in mean precipitation, on the other hand, a sharp decrease in minimum precipitation (446 mm due to G3S4) and a sharp increase in maximum precipitation (233 mm due to G2S1), indicate the occurrence of severe extreme events (drought and flood) in the future.

Evaluating the climate change effects on temperature, precipitation and evapotranspiration in eastern Iran using CMPI5

Water Supply

In this study, the trend of climate changes during a future period from 2020 to 2039 has been evaluated using the data of the Fifth Climate Change Report under two emission scenarios RCP 4.5 and RCP 8.5 for Neishabour plain, Iran. The 11 models of CESM, EC EARTH, HADGEM, MPI, NORESM, CANESM, CSIROM, GFDLCM2, GISS E2, IPSL and MIROC ESM have been used to evaluate changes in minimum and maximum temperatures, precipitation, and evapotranspiration. The results showed that the GFDLCM2, MPI and IPSL models were more accurate in terms of precipitation and the GISS E2 and GFDLCM2 models were the suitable option for predicting the maximum and minimum temperatures and evapotranspiration. Considering the evaluated parameters, minimum temperature, maximum temperature and evapotranspiration had approximately constant trends and were accompanied by a slight increase and decrease for the next two decades, but for the precipitation, large fluctuations were predicted for the next period. Moreover, i...

Assessment of Climate Changing Effect on Precipitation and Temperature of Tehran

Journal of Social Studies, 2021

In this study, we have studied the effect of climate change on precipitation and temperature in Tehran. Climate change affects many aspects of human activity and this effect is greater in large cities such as Tehran so this is an important issue and the main purpose of this study is to investigate the possible changes in the two main parameters related to climate elements (temperature and precipitation). For the coming years, the Tehran city is based on the past climate of this city. To investigate the effect of climate change on precipitation and temperature in Tehran, 30 year statistics and information of 2 stations (Mehrabad and Doshan Tape) in relation to the parameters of precipitation, maximum temperature and minimum temperature based on the daily scale were received from the Meteorological Organization. After the initial statistical corrections on the data based on the Mann-Kendall method for the period 1982 to 2012, we examined the significant trend of the data (incremental and decremental). Then we used the SDSM model to predict the situation from 2015 to 2045. The results of this study showed that based on the effects of climate change in Tehran for Mehrabad and Doshan Tappeh stations, the city will face a decrease in precipitation in the future. Also the minimum and maximum temperatures in Tehran (which has increased significantly since 2000) will increase by 2045. This shows the trend of increasing the minimum and maximum temperatures until 2045.

Effect of Climate Change on Precipitation Patterns in an Arid Region Using GCM Models: Case Study of Isfahan-Borkhar Plain

Natural Hazard Review, 2019

Climate change has major implications for a wide range of natural processes and phenomena, with precipitation patterns particularly sensitive to changes in atmospheric forcing. The arid and semiarid regions of the world, such as Iran, have been affected by declining precipitation. The Isfahan-Borkhar plain in the central region of Iran is one of the areas that has been damaged due to the decrease in rainfall in recent years, and many agricultural lands in this area have already been laid. In this study, five general circulation models (GCM) (MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MRI-CGCM3, and NorESM1-M) for the UN's Fifth Assessment Report (AR5) on climate change were used to assess future changes to precipitation patterns for the Isfahan-Borkhar plain. These models were implemented using three emission scenarios: the representative concentration pathway (RCP)2.6, RCP4.5, and RCP8.5. The period for application of these models is from 2020 to 2044. The GCM models were weighted based on the comparison of their output in the historical period with observational data. Based on the weight assigned to each model, the models were combined and then downscaled using the LARS-WG model. The weight-ing results showed that the MIROC5 model was the most accurate model among all GCM models. The accuracy of this model in September was more than that of the other months. The results also showed that precipitation in all emission scenarios would decrease, which was higher in the RCP8.5 emission scenario than in other RCP's and would have the highest drop in precipitation in August. As it is known, in the RCP2.6 and RCP4.5 emission scenarios, the highest precipitation reduction in winter is expected to be 7.2% and 17%, respectively. Also, for the RCP8.5 emission scenario, the highest precipitation in the spring would be 32.7%. The lowest seasonal precipitation reduction will occur in all emission scenarios in autumn, which will be 3%, 6.9%, and 14.4% in the RCP2.6, RCP4.5, and RCP8.5 emission scenarios, respectively .

Assessment of climate change impacts in a semi-arid watershed in Iran using regional climate models

Journal of Water and Climate Change, 2014

This paper aims to summarize in detail the results of the climate models under various scenarios by temporal and spatial analysis in the semi-arid Karkheh Basin (KB) in Iran, which is likely to experience water shortages. The PRECIS and REMO models, under A2, B2 and A1B scenarios, have been chosen as regional climate models (RCMs). These regional climate models indicate an overall warming in future in KB under various scenarios. The increase in temperature in the dry months (June, July and August) is greater than the increase in the wet months (January, February, March and April). In order to perform climate change impact assessment on water resources, the Arc-SWAT 9.3 model was used in the study area. SWAT (Soil and Water Assessment Tool) model results have been obtained using present and future climate data. There is an overall reduction in the water yield (WYLD) over the whole of the KB. The deficit of WYLD is considerable over the months of April to September throughout KB due to the increase in average temperature and decrease in precipitation under various emission scenarios. Statistical properties in box-and-whisker plots have been used to gain further understanding relevant to uncertainty analysis in climate change impacts. Evaluation of uncertainty has shown the highest uncertain condition under B2.

The Impact of Climate Change on Climate Variables and Meteorological Drought Using the climate change Toolkit (CCT) in the Karkheh River Basin, Iran

2021

Drought appears as an environmentally integral part of climate change. This study was conducted to investigate the impact of climate change on climate variables, meteorological drought and pattern recognition for severe weather conditions in the Karkheh River Basin in the near future (2043-2071) and the distant future (2072-2100). The outputs of GFDL-ESM2, HadGEM2-ES, IPSL-CM5A-LR, MIROC and NoerESM1-M models were downscaled under the RCP 2.6 and RCP8.5 scenarios using the Climate Change Toolkit (CCT) at 17 meteorological stations. Then the SPEI index was calculated for the base and future periods and compared with each other. The results showed that the basin annual precipitation will likely increase in both future periods, especially in the near future. The annual maximum and minimum temperatures may also increase especially in the distant future. The rise in the maximum temperature will be possibly greater than the minimum temperature. Seasonal changes in maximum and minimum temp...

Assessment of the Precipitation and Temperature Changes Over South East Iran Using Downscaling of General Circulation Models Outputs

2016

Extended Abstract Introduction Numerous studies have demonstrated the relationship between the amount of CO2 in the atmosphere and climate change. In this respect, developed countries have an undeniable role and cause serious damage to earth environment throughout the world. IPCC’ forth evaluation report implies that adding greenhouse gases to the atmosphere during recent decades prevents the heat rays to emit which, in turn, cause atmospheric temperature to increase. During the past centuries, the temperature has increased by 3 to 6 Degrees Centigrade, with a rapid speed in the recent decades. It is believed that if greenhouse gases continue to increase at the present rate, an average increase in temperature, from 1 c to3.5 c , is expected by the year 2100. Therefore, it is necessary to study and evaluate climate changes in the future decades so as to plan a proper environmental program corresponding to future climate conditions, consequently reduce its unfavorable effects. With th...

Water resources availability under different climate change scenarios in South East of Iran

Journal of Water and Climate Change

The comprehensive large-scale assessment of future available water resources is crucial for food security in countries dealing with water shortages like Iran. Kerman province, located in the south east of Iran, is an agricultural hub and has vital importance for food security. This study attempts to project the impact of climate change on available water resources of this province and then, by defining different scenarios, to determine the amount of necessary reduction in cultivation areas to achieve water balance over the province. The GFDL-ESM2M climate change model, RCP scenarios, and the CCT (Climate Change Toolkit) were used to project changes in climatic variables, and the Soil and Water Assessment Tool (SWAT) was used for hydrological simulation. The future period for which forecasts are made is 2020–2050. Based on the coefficient of determination (R2) and Nash–Sutcliffe coefficient, the CCT demonstrates good performance in data downscaling. The results show that under all cl...

Assessing the impact of climate change on water resources in Iran

Water Resources Research, 2009

As water resources become further stressed due to increasing levels of societal demand, understanding the effect of climate change on various components of the water cycle is of strategic importance in management of this essential resource. In this study, we used a hydrologic model of Iran to study the impact of future climate on the country's water resources. The hydrologic model was created using the Soil and Water Assessment Tool (SWAT) model and calibrated for the period from 1980 to 2002 using daily river discharges and annual wheat yield data at a subbasin level. Future climate scenarios for periods of 2010-2040 and 2070-2100 were generated from the Canadian Global Coupled Model (CGCM 3.1) for scenarios A1B, B1, and A2, which were downscaled for 37 climate stations across the country. The hydrologic model was then applied to these periods to analyze the effect of future climate on precipitation, blue water, green water, and yield of wheat across the country. For future scenarios we found that in general, wet regions of the country will receive more rainfall while dry regions will receive less. Analysis of daily rainfall intensities indicated more frequent and larger-intensity floods in the wet regions and more prolonged droughts in the dry regions. When aggregated to provincial levels, the differences in the predictions due to the three future scenarios were smaller than the uncertainty in the hydrologic model. However, at the subbasin level the three climate scenarios produced quite different results in the dry regions of the country, although the results in the wet regions were more or less similar.