Scalable Retrieval of Similar Landscapes in Optical Satellite Imagery Using Unsupervised Representation Learning (original) (raw)

Global Earth Observation (EO) is becoming increasingly important in understanding and addressing critical aspects of life on our planet about environmental issues, natural disasters, sustainable development and others. EO plays a key role in making informed decisions on applying or reforming land use, responding to disasters, shaping climate adaptation policies etc. EO is also becoming a useful tool for helping professionals make the most profitable decisions, e.g., in real estate or the investment sector. Finding similarities in landscapes may provide useful information regarding applying contiguous policies, taking alike decisions or learning from best practices on events and happenings that have already occurred in similar landscapes in the past. However, current applications of similar landscape retrieval are limited by moderate performance and the need for time-consuming and costly annotations. We propose splitting the similar landscape retrieval task into a set of smaller task...