Does the Performance of MCDM Rankings Increase as Sensitivity Decreases? Graphics Card Selection and Pattern Discovery Using the PROBID Method (original) (raw)
2024, Journal of intelligent management decision
In general, a stable and strong system shouldn't have an overly sensitive/dependent response to inputs (unless consciously and planned desired), as this would reduce efficiency. As in other techniques, approaches, and methodologies, if the results are excessively affected when the input parameters change in MCDM methods, this situation is identified with sensitivity analyses. Oversensitivity is generally accepted as a problem in the MCDM (Multi-Criteria Decision Making) methodology family, which has more than 200 members according to the current literature. The MCDM family is not just a weight coefficient-sensitive methodology. MCDM types can also be sensitive to many different calculation parameters such as data type, normalization, fundamental equation, threshold value, preference function, etc. Many studies to understand the degree of sensitivity simply monitor whether the ranking position of the best alternative changes. However, this is incomplete for understanding the nature of sensitivity, and more evidence is undoubtedly needed to gain insight into this matter. Observing the holistic change of all alternatives compared to a single alternative provides the researcher with more reliable and generalizing evidence, information, or assumptions about the degree of sensitivity of the system. In this study, we assigned a fixed reference point to measure sensitivity with a more robust approach. Thus, we took the distance to the fixed point as a base reference while observing the changeable MCDM results. We calculated sensitivity to normalization, not just sensitivity to weight coefficients. In addition, past MCDM studies accept existing data as the only criterion in sensitivity analysis and make generalizations easily. To show that the model proposed in this study is not a coincidence, in addition to the graphics card selection problem, an exploratory validation was performed for another problem with a different set of data, alternatives, and criteria. We comparatively measured sensitivity using the relationship between MCDM-based performance and the static reference point. We statistically measured the sensitivity with four types of weighting methods and 7 types of normalization techniques with the PROBID method. The striking result, confirmed by 56 different MCDM ranking findings, was this: In general, if the sensitivity of an MCDM method is high, the relationship of that MCDM method to a fixed reference point is low. On the other hand, if the sensitivity is low, a high correlation with the reference point is produced. In short, uncontrolled hypersensitivity disrupts not only the ranking but also external relations, as expected.