Developing a two-parameter Liu estimator for the COM–Poisson regression model: Application and simulation (original) (raw)

A New Conway Maxwell–Poisson Liu Regression Estimator—Method and Application

Journal of Mathematics, 2022

Poisson regression is a popular tool for modeling count data and is applied in medical sciences, engineering and others. Real data, however, are often over or underdispersed, and we cannot apply the Poisson regression. To overcome this issue, we consider a regression model based on the Conway-Maxwell Poisson (COMP) distribution. Generally, the maximum likelihood estimator is used for the estimation of unknown parameters of the COMP regression model. However, in the existence of multicollinearity, the estimates become unstable due to its high variance and standard error. To solve the issue, a new COMP Liu estimator is proposed for the COMP regression model with over-, equi-, and underdispersion. To assess the performance, we conduct a Monte Carlo simulation where mean squared error is considered as an evaluation criterion. Findings of simulation study show that the performance of our new estimator is considerably better as compared to others. Finally, an application is consider to assess the superiority of the proposed COMP Liu estimator. e simulation and application findings clearly demonstrated that the proposed estimator is superior to the maximum likelihood estimator.

New Liu Estimators for the Poisson Regression Model: Method and Application

A new shrinkage estimator for the Poisson model is introduced in this paper. This method is a generalization of the Liu (1993) estimator originally developed for the linear regression model and will be generalised here to be used instead of the classical maximum likelihood (ML) method in the presence of multicollinearity since the mean squared error (MSE) of ML becomes inflated in that situation. Furthermore, this paper derives the optimal value of the shrinkage parameter and based on this value some methods of how the shrinkage parameter should be estimated are suggested. Using Monte Carlo simulation where the MSE and mean absolute error (MAE) are calculated it is shown that when the Liu estimator is applied with these proposed estimators of the shrinkage parameter it always outperforms the ML. Finally, an empirical application has been considered to illustrate the usefulness of the new Liu estimators.

Improved Liu Estimators for the Poisson Regression Model

International Journal of Statistics and Probability, 2012

A new shrinkage estimator for the Poisson model is introduced in this paper. This method is a generalization of the Liu (1993) estimator originally developed for the linear regression model and will be generalized here to be used instead of the classical maximum likelihood (ML) method in the presence of multicollinearity since the mean squared error (MSE) of ML becomes inflated in that situation. Furthermore, this paper derives the optimal value of the shrinkage parameter and based on this value some methods of how the shrinkage parameter should be estimated are suggested. Using Monte Carlo simulation where the MSE and mean absolute error (MAE) are calculated it is shown that when the Liu estimator is applied with these proposed estimators of the shrinkage parameter it always outperforms the ML.

On a Mixed Poisson Liu Regression Estimator for Overdispersed and Multicollinear Count Data

The Scientific World Journal

The mixed Poisson regression models are commonly employed to analyze the overdispersed count data. However, multicollinearity is a common issue when estimating the regression coefficients by using the maximum likelihood estimator (MLE) in such regression models. To deal with the multicollinearity, a Liu estimator was proposed by Liu (1993). The Poisson-Modification of the Quasi Lindley (PMQL) regression model is a mixed Poisson regression model introduced recently. The primary interest of this paper is to introduce the Liu estimator for the PMQL regression model to mitigate the multicollinearity issue. To estimate the Liu parameter, some exiting methods are used, and the superiority conditions of the new estimator over the MLE and PMQL ridge regression estimator are obtained based on the mean square error (MSE) criterion. A Monte Carlo simulation study and applications are used to assess the performance of the new estimator in the scalar mean square error (SMSE) sense. Based on the ...

Influence Diagnostic Methods in the Poisson Regression Model with the Liu Estimator

Computational Intelligence and Neuroscience

There is a long history of interest in modeling Poisson regression in different fields of study. The focus of this work is on handling the issues that occur after modeling the count data. For the prediction and analysis of count data, it is valuable to study the factors that influence the performance of the model and the decision based on the analysis of that model. In regression analysis, multicollinearity and influential observations separately and jointly affect the model estimation and inferences. In this article, we focused on multicollinearity and influential observations simultaneously. To evaluate the reliability and quality of regression estimates and to overcome the problems in model fitting, we proposed new diagnostic methods based on Sherman–Morrison Woodbury (SMW) theorem to detect the influential observations using approximate deletion formulas for the Poisson regression model with the Liu estimator. A Monte Carlo method is done for the assessment of the proposed diagn...

Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation

2021

Background: Multicollinearity greatly affects the Maximum Likelihood Estimator (MLE) efficiency in both the linear regression model and the generalized linear model. Alternative estimators to the MLE include the ridge estimator, the Liu estimator and the Kibria-Lukman (KL) estimator, though literature shows that the KL estimator is preferred. Therefore, this study sought to modify the KL estimator to mitigate the Poisson Regression Model with multicollinearity. Methods: A simulation study and a real-life study were carried out and the performance of the new estimator was compared with some of the existing estimators. Results: The simulation result showed the new estimator performed more efficiently than the MLE, Poisson Ridge Regression Estimator (PRE), Poisson Liu Estimator (PLE) and the Poisson KL (PKL) estimators. The real-life application also agreed with the simulation result. Conclusions: In general, the new estimator performed more efficiently than the MLE, PRE, PLE and the P...

A new estimator for the multicollinear Poisson regression model: simulation and application

Scientific Reports

The maximum likelihood estimator (MLE) suffers from the instability problem in the presence of multicollinearity for a Poisson regression model (PRM). In this study, we propose a new estimator with some biasing parameters to estimate the regression coefficients for the PRM when there is multicollinearity problem. Some simulation experiments are conducted to compare the estimators' performance by using the mean squared error (MSE) criterion. For illustration purposes, aircraft damage data has been analyzed. The simulation results and the real-life application evidenced that the proposed estimator performs better than the rest of the estimators.

Modified ridge-type for the Poisson regression model: simulation and application

Journal of Applied Statistics, 2021

The Poisson regression model (PRM) is employed in modelling the relationship between a count variable (y) and one or more explanatory variables. The parameters of PRM are popularly estimated using the Poisson maximum likelihood estimator (PMLE). There is a tendency that the explanatory variables grow together, which results in the problem of multicollinearity. The variance of the PMLE becomes inflated in the presence of multicollinearity. The Poisson ridge regression (PRRE) and Liu estimator (PLE) have been suggested as an alternative to the PMLE. However, in this study, we propose a new estimator to estimate the regression coefficients for the PRM when multicollinearity is a challenge. We perform a simulation study under different specifications to assess the performance of the new estimator and the existing ones. The performance was evaluated using the scalar mean square error criterion and the mean squared error prediction error. The aircraft damage data was adopted for the application study and the estimators' performance judged by the SMSE and the mean squared prediction error. The theoretical comparison shows that the proposed estimator outperforms other estimators. This is further supported by the simulation study and the application result.

Improved estimators for the zero-inflated Poisson regression model in the presence of multicollinearity: simulation and application of maternal death data

Communications in Statistics: Case Studies, Data Analysis and Applications

In this article, we propose Liu-type shrinkage estimators for the zero-inflated Poisson regression (ZIPR) model in the presence of multicollinearity. Our new approach is a remedy to the problem of inflated variances for the ML estimation technique-which is a standard approach to estimate these types of count data models. When the data are in the form of non-negative integers with a surplus of zeros it induces overdispersion in the dependent variable. Considerable multicollinearity is frequently observed, but usually disregarded, for these types of data sets. Based on a Monte Carlo study we illustrate that our proposed estimators exhibit better MSE and MAE than the usual ML estimator and some other Liu estimators in the presence of multicollinearity. To demonstrate the advantages and the empirical relevance of our improved estimators, maternal death data are analyzed and the results illustrate similar benefits as is demonstrated in our simulation study.

The Cos-Poisson model with a novel count regression analysis

Hacettepe Journal of Mathematics and Statistics

In this paper, we propose a new generalization of the Poisson distribution by using the concept of the weighted distribution; a trigonometric weight with the cosine function is used. We derive some distributional properties of the new distribution, such as the cumulative distribution function, moment generating function, factorial moments, and index of dispersion. Then, the related model is considered for modeling purposes, with estimation of the model parameters performed via several methods. Zero-inflated count regression analysis is introduced by using the new distribution. Finally, we provide two applications of the obtained results on practical data sets.