IFN-γ Stimulated Human Umbilical-Tissue-Derived Cells Potently Suppress NK Activation and Resist NK-Mediated Cytotoxicity In Vitro (original) (raw)

Human NK cells: From surface receptors to clinical applications

Immunology Letters, 2016

HIGHLIGHTS  NK cells belong to Innate lymphoid cell family  NK cells may play a role in immunotherapy of solid tumors  Tumor microenvironment influences NK cell function  NK cells play a role in the haploidentical HSCT setting Summary Natural killer (NK) cells play a major role in innate defenses against pathogens, primarily viruses, and are also thought to be part of the immunosurveillance against tumors. They express an array of surface receptors that mediate NK cell function. The human leukocytes antigen (HLA) class I-specific inhibitory receptors allow NK cells to detect and kill cells that have lost or under-express HLA class I antigens, a typical feature of tumor or virally infected cells. However, NK cell activation and induction of cytolytic activity and cytokine production depends on another important checkpoint, namely the expression on target cells of ligands recognized by activating NK receptors. Despite their potent cytolytic activity, NK cells frequently fail to eliminate tumors. This is due to mechanisms of tumor escape, determined by the tumor cells themselves or by tumor-associated cells (i.e. the tumor microenvironment) via the release of soluble suppressive factors or the induction of inhibitory loops involving induction of regulatory T cells, M2-polarized macrophages and myeloid-derived suppressor cells. The most important clinical application involving NK cells is the cure of high-risk leukemias in the haplo-identical hematopoietic stem cell transplant (HSCT) setting. NK cells originated from hematopoietic stem cells (HSC) of HLA-haploidentical donors may express Killer Immunoglobulin-like receptors (KIRs) that are mismatched with the HLA class I alleles of the recipient. This allows NK cells to kill leukemia blasts residual after the conditioning regimen, while sparing normal cells (that do not express ligands for activating NK receptors). More recent approaches based on the specific removal of TCR α/β + T cells and of CD19 + B cells, allow the infusion, together with CD34 + HSC, of mature KIR + NK cells and of TCR γ/δ + T cells, both characterized by a potent anti-leukemia activity. This greatly reduces the time interval necessary to obtain alloreactive, KIR + NK cells derived from donor HSC. Another promising approach is based on the use of anti-KIR blocking monoclonal antibodies (mAbs), rendering alloreactive any KIR + NK cells.

Role of gamma-secretase in human umbilical-cord derived mesenchymal stem cell mediated suppression of NK cell cytotoxicity

Cell Communication and Signaling, 2014

Background: Mesenchymal stem cells (MSCs) are increasingly considered to be used as biological immunosuppressants in hematopoietic stem cell transplantation (HSCT). In the early reconstitution phase following HSCT, natural killer (NK) cells represent the major lymphocyte population in peripheral blood and display graft-vs-leukemia (GvL) effects. The functional interactions between NK cells and MSCs have the potential to influence the leukemia relapse rate after HSCT. Until date, MSC-NK cell interaction studies are largely focussed on bone marrow derived (BM)-MSCs. Umbilical cord derived (UC)-MSCs might be an alternative source of therapeutic MSCs. Thus, we studied the interaction of UC-MSCs with unstimulated allogeneic NK cells.

NK Cells—From Bench to Clinic

Biology of Blood and Marrow Transplantation, 2012

After decades of mouse and human research, we now know that NK cells have unique properties including memory. Although initially described as MHC unrestricted killers, NK cells have several families of receptors that directly recognize MHC including Ly49 receptors in the mouse and killer immunoglobulin-like receptors (KIR) in humans. The strength of this signal is determined by polymorphisms in NK cell inhibitory receptor genes and their MHC ligands inherited on different chromosomes. Inhibitory receptors protect "self" expressing normal tissue from being killed by NK cells and protecting against autoimmunity. Therefore, for NK cells to kill and produce cytokines they must encounter activating receptor ligands in the context of "missing self" that occurs with some viral infections and malignant transformation. The second property of inhibitory receptors is to educate or license NK cells to acquire function. This is best demonstrated in the mouse and in humans by enhanced function on self inhibitory receptor expressing NK cells when in a host expressing cognate ligate. In contrast, NK cells without inhibitory receptors or with non-self inhibitory receptors are relatively hyporesponsive. The basic biology of NK cells in response to cytokines, education, and viruses will translate into strategies to manipulate NK cells for therapeutic purposes.

Human NK cells: From development to effector functions. Human NK cells -from development to effector functions

Innate Immunity, 2021

NK cells are the major lymphocyte subset of the innate immune system that mediates antiviral and anti-tumor responses. It is well established that they develop mechanisms to distinguish self from non-self during the process of NK cell education. Unlike T and B cells, natural killer cells lack clonotypic receptors and are activated after recognizing their target via germline-encoded receptors through natural cytotoxicity, cytokine stimulation, and Ab-dependent cellular cytotoxicity. Subsequently, they utilize cytotoxic granules, death receptor ligands, and cytokines to perform their effector functions. In this review, we provide a general overview of human NK cells, as opposed to murine NK cells, discussing their ontogeny, maturation, receptor diversity, types of responses, and effector functions. Furthermore, we also describe recent advances in human NK cell biology, including tissue-resident NK cell populations, NK cell memory, and novel approaches used to target NK cells in cancer immunotherapy.

Markers and function of human nk cells in normal and pathological conditions

Cytometry. Part B, Clinical cytometry, 2017

Natural killer (NK) cells, the most important effectors of the Innate Lymphoid Cells (ILCs), play a fundamental role in tumor immune-surveillance, defense against viruses and, in general, in innate immune responses. NK cell activation is mediated by several activating receptors and co-receptors able to recognize ligands on virus-infected or tumor cells. To prevent healthy cells from auto-aggression, NK cells are provided with strong inhibitory receptors (KIRs and NKG2A) which recognize HLA class I molecules on target cells and, sensing their level of expression, allow killing of targets underexpressing HLA-class I. In vivo, NK cell-mediated anti-tumor function may be suppressed by tumor or tumor-associated cells via inhibitory soluble factors/cytokines or the engagement of the so called immune-check point molecules (e.g.: PD1-PDL1). The study of these immune check-points is now offering new important opportunities for the therapy of cancer. In haemopoietic stem cell transplantation,...

Human NK cells, their receptors and function

European Journal of Immunology, 2021

NK cells are cytotoxic components of innate lymphoid cells (ILC) that provide a first line of defense against viral infections and contribute to control tumor growth and metastasis. Their function is finely regulated by an array of HLA-specific and non-HLA-specific inhibitory and activating receptors which allow to discriminate between healthy and altered cells. Human NK cells gained a major attention in recent years because of the important progresses in understanding their biology and of some promising data in tumor therapy. In this review, we will outline well-established issues of human NK cells and discuss some of the open questions, debates, and recent advances regarding their origin, differentiation, and tissue distribution. Newly defined NK cell specializations, including the impact of inhibitory checkpoints on their function, their crosstalk with other cell types, and the remarkable adaptive features acquired in response to certain virus infections will also be discussed.

Differentiation and functional regulation of human fetal NK cells

Journal of Clinical Investigation, 2013

The human fetal immune system is naturally exposed to maternal allogeneic cells, maternal antibodies, and pathogens. As such, it is faced with a considerable challenge with respect to the balance between immune reactivity and tolerance. Here, we show that fetal natural killer (NK) cells differentiate early in utero and are highly responsive to cytokines and antibody-mediated stimulation but respond poorly to HLA class I-negative target cells.

Human NK cells: From development to effector functions

Innate Immunity, 2021

NK cells are the major lymphocyte subset of the innate immune system that mediates antiviral and anti-tumor responses. It is well established that they develop mechanisms to distinguish self from non-self during the process of NK cell education. Unlike T and B cells, natural killer cells lack clonotypic receptors and are activated after recognizing their target via germline-encoded receptors through natural cytotoxicity, cytokine stimulation, and Ab-dependent cellular cytotoxicity. Subsequently, they utilize cytotoxic granules, death receptor ligands, and cytokines to perform their effector functions. In this review, we provide a general overview of human NK cells, as opposed to murine NK cells, discussing their ontogeny, maturation, receptor diversity, types of responses, and effector functions. Furthermore, we also describe recent advances in human NK cell biology, including tissue-resident NK cell populations, NK cell memory, and novel approaches used to target NK cells in cancer...