Inhibition of TRPM7 suppresses cell proliferation of colon adenocarcinoma in vitro and induces hypomagnesemia in vivo without affecting azoxymethane-induced early colon cancer in mice (original) (raw)

Abstract

Background: Magnesium (Mg 2+) is an essential cation implicated in carcinogenesis, solid tumor progression and metastatic potential. The Transient Receptor Potential Melastatin Member 7 (TRPM7) is a divalent ion channel involved in cellular and systemic Mg 2+ homeostasis. Abnormal expression of TRPM7 is found in numerous cancers, including colon, implicating TRPM7 in this process. Methods: To establish a possible link between systemic magnesium (Mg 2+) status, the Mg 2+ conducting channel TRPM7 in colon epithelial cells, and colon carcinogenesis, in vitro whole-cell patch clamp electrophysiology, qPCR, and pharmacological tools were used probing human colorectal adenocarcinoma HT-29 as well as normal primary mouse colon epithelial cells. This was extended to and combined with aberrant crypt foci development in an azoxymethane-induced colorectal cancer mouse model under hypomagnesemia induced by diet or pharmacologic intervention. Results: We find that TRPM7 drives colon cancer cell proliferation in human HT-29 and expresses in normal primary mouse colon epithelia. This is linked to TRPM7's dominant role as Mg 2+ transporter, since high extracellular Mg 2+ supplementation cannot rescue inhibition of cell proliferation caused by suppressing TRPM7 either genetically or pharmacologically. In vivo experiments in mice provide evidence that the specific TRPM7 inhibitor waixenicin A, given as a single bolus injection, induces transient hypomagnesemia and increases intestinal absorption of calcium. Repeated injections of waixenicin A over 3 weeks cause hypomagnesemia via insufficient Mg 2+ absorption by the colon. However, neither waixenicin A, nor a diet low in Mg 2+ , affect aberrant crypt foci development in an azoxymethane-induced colorectal cancer mouse model. Conclusion: Early stage colon cancer proceeds independent of systemic Mg 2+ status and TRPM7, and waixenicin A is a useful pharmacological tool to study of TRPM7 in vitro and in vivo.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (37)

  1. Wolf FI, Trapani V, Cittadini A. Magnesium and the control of cell proliferation: looking for a needle in a haystack. Magnes Res [Internet]. 2008;21:83-91. Available from: http://www.ncbi.nlm.nih.gov/entrez/query. fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18705535.
  2. Wolf FI, Trapani V. Cell (patho)physiology of magnesium. Clin Sci [Internet]. 2008;114:27-35. Available from: http://www.ncbi.nlm.nih.gov/entrez/query. fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18047467.
  3. Trapani V, Arduini D, Cittadini A, Wolf FI. From magnesium to magnesium transporters in cancer: TRPM7, a novel signature in tumour development. Magnes Res. 2013;26:149-55.
  4. Nasulewicz A, Wietrzyk J, Wolf FI, Dzimira S, Madej J, Maier JAM, et al. Magnesium deficiency inhibits primary tumor growth but favors metastasis in mice. Biochim Biophys Acta. 1739;2004:26-32.
  5. Wolf FI, Cittadini AR, Maier JA. Magnesium and tumors: ally or foe? Cancer Treat Rev [Internet]. 2009;35:378-82. Available from: http://www.ncbi.nlm. nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids= 19203841.
  6. Schrag D, Chung KY, Flombaum C, Saltz L. Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst. 2005;97:1221-4.
  7. Evans TR, Harper CL, Beveridge IG, Wastnage R, Mansi JL. A randomised study to determine whether routine intravenous magnesium supplements are necessary in patients receiving cisplatin chemotherapy with continuous infusion 5-fluorouracil. Eur J Cancer Oxf Engl 1990. 1995;31A:174-8.
  8. Blaszczyk U, Duda-Chodak A. Magnesium: its role in nutrition and carcinogenesis. Rocz Panstw Zakl Hig. 2013;64:165-71.
  9. Fleig A, Chubanov V. TRPM7. Handb Exp Pharmacol. 2014;222:521-46.
  10. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol [Internet]. 2003;121:49-60. Available from: http:// www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt= Citation&list_uids=12508053.
  11. Ryazanova LV, Rondon LJ, Zierler S, Hu Z, Galli J, Yamaguchi TP, et al. TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat Commun [Internet]. 2010;1: 109. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd= Retrieve&db=PubMed&dopt=Citation&list_uids=21045827.
  12. Ryazanova LV, Hu Z, Suzuki S, Chubanov V, Fleig A, Ryazanov AG. Elucidating the role of the TRPM7 alpha-kinase: TRPM7 kinase inactivation leads to magnesium deprivation resistance phenotype in mice. Sci Rep. 2014;4:7599.
  13. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, et al. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell [Internet]. 2003;114:191-200. Available from: http://www.ncbi.nlm.nih.gov/entrez/query. fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12887921.
  14. Gautier M, Perrière M, Monet M, Vanlaeys A, Korichneva I, Dhennin-Duthille I, et al. Recent advances in oncogenic roles of the TRPM7 chanzyme. Curr Med Chem. 2016;23:4092-107.
  15. Qin Y, Liao Z-W, Luo J-Y, Wu W-Z, Lu A-S, Su P-X, et al. Functional characterization of TRPM7 in nasopharyngeal carcinoma and its knockdown effects on tumorigenesis. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2016;37:9273-83.
  16. Middelbeek J, Kuipers AJ, Henneman L, Visser D, Eidhof I, van Horssen R, et al. TRPM7 is required for breast tumor cell metastasis. Cancer Res. 2012;72:4250-61.
  17. Castiglioni S, Cazzaniga A, Trapani V, Cappadone C, Farruggia G, Merolle L, et al. Magnesium homeostasis in colon carcinoma LoVo cells sensitive or resistant to doxorubicin. Sci Rep. 2015;5:16538.
  18. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, et al. A key role for TRPM7 channels in anoxic neuronal death. Cell [internet]. 2003;115: 863-77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14697204.
  19. Dai Q, Shrubsole MJ, Ness RM, Schlundt D, Cai Q, Smalley WE, et al. The relation of magnesium and calcium intakes and a genetic polymorphism in the magnesium transporter to colorectal neoplasia risk. Am J Clin Nutr. 2007;86:743-51.
  20. Booth C, O'Shea JA. Isolation and Culture of Intestinal Epithelial Cells. In: Freshney RI, Freshney MG, editors. Culture of Epithelial Cells, Second Edition. New York: John Wiley & Sons, Inc.; 2002. doi:10.1002/0471221201.ch10.
  21. Zierler S, Yao G, Zhang Z, Kuo WC, Porzgen P, Penner R, et al. Waixenicin a inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (TRPM7) channels. J biol Chem [internet]. 2011; 286:39328-35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21926172.
  22. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, et al. LTRPC7 is a mg.ATP-regulated divalent cation channel required for cell viability. Nature [internet]. 2001;411:590-5. Available from: http://www.ncbi. nlm.nih.gov/pubmed/11385574.
  23. Kawamori T, Kaneshiro T, Okumura M, Maalouf S, Uflacker A, Bielawski J, et al. Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J Off Publ Fed Am Soc Exp Biol. 2009;23:405-14.
  24. Bird RP. Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett. 1987;37:147-51.
  25. Chubanov V, Gudermann T. TRPM6. Handb Exp Pharmacol. 2014;222:503-20.
  26. Li M, Du J, Jiang J, Ratzan W, Su LT, Runnels LW, et al. Molecular determinants of Mg2+ and Ca2+ permeability and pH sensitivity in TRPM6 and TRPM7. J biol Chem [internet]. 2007;282:25817-30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17599911.
  27. Zhang Z, Yu H, Huang J, Faouzi M, Penner R, Fleig A. The TRPM6 kinase domain determines the mg•ATP sensitivity of TRPM7/M6 Heteromeric ion channels. J Biol Chem. 2014;289:5217-127.
  28. Zhang Z, Faouzi M, Huang J, Geerts D, Yu H, Fleig A, et al. N-Myc-induced up-regulation of TRPM6/TRPM7 channels promotes neuroblastoma cell proliferation. Oncotarget. 2014;5:7625-34.
  29. Demeuse P, Penner R, Fleig A. TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J gen Physiol [internet]. 2006;127:421-34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16533898.
  30. de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95:1-46.
  31. De Robertis M, Massi E, Poeta ML, Carotti S, Morini S, Cecchetelli L, et al. The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J Carcinog. 2011;10:9.
  32. Becchetti A. Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am J Physiol Cell Physiol. 2011;301:C255-65.
  33. Fouani L, Menezes SV, Paulson M, Richardson DR, Kovacevic Z. Metals and metastasis: exploiting the role of metals in cancer metastasis to develop novel anti-metastatic agents. Pharmacol Res. 2017;115:275-87.
  34. Ressnerova A, Raudenska M, Holubova M, Svobodova M, Polanska H, Babula P, et al. Zinc and copper homeostasis in head and neck cancer: review and meta-analysis. Curr Med Chem. 2016;23:1304-30.
  35. Park K-S, Lee N-G, Lee K-H, Seo JT, Choi K-Y. The ERK pathway involves positive and negative regulations of HT-29 colorectal cancer cell growth by extracellular zinc. Am J Physiol Gastrointest Liver Physiol. 2003;285:G1181-8.
  36. Zhang Y, Zhang Z-W, Xie Y-M, Wang S-S, Qiu Q-H, Zhou Y-L, et al. Toxicity of nickel ions and comprehensive analysis of nickel ion-associated gene expression profiles in THP-1 cells. Mol Med Rep. 2015;12:3273-8.
  37. D'Antò V, Valletta R, Amato M, Schweikl H, Simeone M, Paduano S, et al. Effect of nickel chloride on cell proliferation. Open Dent J. 2012;6:177-81.