Preinvex functions and weak efficient solutions for some vectorial optimization problem in Banach spaces (original) (raw)

Abstract

In this work~ we introduce the notion of preinvex function for functions between Bar nach spaces. By using these functions, we obtain necessary and sufficient conditions of optimality for vectorial problems with restrictions of inequalities. Moreover, we will show that this class of problems has the property that each local optimal solution is in fact global.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (20)

  1. F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, (1983).
  2. B.D. Craven, Nonsmooth multiobjective programming, Numer. Funct. Anal. Optimiz. 10, 49-64, (1989).
  3. M. Minami, Weak Pareto~optimal necessary conditions in a nondifferential multiobjective program on a Banach space, Journal Optim. Theory Appl. 41, 451-461, (1983).
  4. S.K. Mishra and R.N. Mukherjee, On generalised convex multiobjective nonsmooth programming, Journal of the AusSralian Mathematical Society Ser B 38, 140-148, (1996).
  5. R. Osuna G6mez, Programaci6n con objetivos mdltiples: Dualidad, Doctoral Thesis, Universidad de Sevilla, (1995).
  6. R. Osun~G6mez, A. Rufign-Lizana and P. Rufz-Canales, Multiobjective fractional programming with gen- eralized convexity, Sociedad de Estadistica e Inves$igaci6n Operativa Top 8 1, 97-110, (2000).
  7. R. Osuna-G6mez, A. Beato-Moreno and A. Rufi~n-Lizana, Generalized convexity in multiobjective program- ming, Journal of Mathematical Analysis and Applications 233, 205-220, (1999).
  8. R. Osuna-G6mez, A. Rufi£n-Lizana and P. Rtdz-Canales, Invex functions and generalized convexity in mul- tiobjective programming, Journal of Optimization Theory and Applications 98, 651-661, (1998).
  9. B. El Abdouni and L. Thibault, Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces, Optimization 26, 277-285, (1992).
  10. L. Coladas, Z. Li and S. Wang, Optimality conditions for multiobjective and nonsmooth minimisation in abstract spaces, Bulletin of the Australian Mathematical Society 50, 205-218, (1994).
  11. A.J.V. Brand,o, M.A. Rojas-Medar and G.N. Silva, Optimality conditions for Pareto nonsmooth nonconvex programming in Banach spaces, Journal Optim. Theory Appl. 103, 65-73, (1999).
  12. O.L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, (1969).
  13. K.H. Elster and R. Nehse, Optimality Conditions for Some Nonconvex Problems, Springer-Verlag, New York, (1980).
  14. M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal Mathematical Analysis and Applications 80, 545-550, (1981).
  15. M.A. Hanson, Invexity and the Kuhn-Tucker theorem, Journal of Mathematical Analysis and Applications 236, 594-604, (1999).
  16. M. A. Hanson and B. Mond, Convex transformable programming problems and invexity, Journal of Infor- mation and Optimization Sciences 8, 201-207, (1987).
  17. D. G. Luenberger, Optimization by Vector Spaces Methods, John Willey & Sons, (1969).
  18. B. D. Craven, Control and Optimization, Chapman & Hall, (1995).
  19. N. Dunfort and J. Schwarz, Linear Operators, Part I, Interscience, (1957).
  20. I. V. Cirsanov, Lectures on Mathematical Theory of Extremum Problems, Lecture Notes in Economics and Mathematical Systems, Volume 67, (1972).