Evolution and molecular basis of a novel allosteric property of crocodilian hemoglobin (original) (raw)

The role of mutation bias in adaptive molecular evolution: insights from convergent changes in protein function

An underexplored question in evolutionary genetics concerns the extent to which mutational bias in the production of genetic variation influences outcomes and pathways of adaptive molecular evolution. In the genomes of at least some vertebrate taxa, an important form of mutation bias involves changes at CpG dinucleotides: If the DNA nucleotide cytosine (C) is immediately 5' to guanine (G) on the same coding strand, then - depending on methylation status - point mutations at both sites occur at an elevated rate relative to mutations at non-CpG sites. Here we examine experimental data from case studies in which it has been possible to identify the causative substitutions that are responsible for adaptive changes in the functional properties of vertebrate hemoglobin (Hb). Specifically, we examine the molecular basis of convergent increases in Hb-O2 affinity in high-altitude birds. Using a data set of experimentally verified, affinity-enhancing mutations in the Hbs of highland avian...

Genetic Constraints on Protein Evolution

Critical Reviews in Biochemistry and Molecular Biology, 2007

Evolution requires the generation and optimization of new traits ("adaptation") and involves the selection of mutations that improve cellular function. These mutations were assumed to arise by selection of neutral mutations present at all times in the population. Here we review recent evidence that indicates that deleterious mutations are more frequent in the population than previously recognized and that these mutations play a significant role in protein evolution through continuous positive selection. Positively selected mutations include adaptive mutations, i.e. mutations that directly affect enzymatic function, and compensatory mutations, which suppress the pleiotropic effects of adaptive mutations. Compensatory mutations are by far the most frequent of the two and would allow potentially adaptive but deleterious mutations to persist long enough in the population to be positively selected during episodes of adaptation. Compensatory mutations are, by definition, context-dependent and thus constrain the paths available for evolution. This provides a mechanistic basis for the examples of highly constrained evolutionary landscapes and parallel evolution reported in natural and experimental populations. The present review article describes these recent advances in the field of protein evolution and discusses their implications for understanding the genetic basis of disease and for protein engineering in vitro.

Initial Mutations Direct Alternative Pathways of Protein Evolution

PLoS Genetics, 2011

Whether evolution is erratic due to random historical details, or is repeatedly directed along similar paths by certain constraints, remains unclear. Epistasis (i.e. non-additive interaction between mutations that affect fitness) is a mechanism that can contribute to both scenarios. Epistasis can constrain the type and order of selected mutations, but it can also make adaptive trajectories contingent upon the first random substitution. This effect is particularly strong under sign epistasis, when the sign of the fitness effects of a mutation depends on its genetic background. In the current study, we examine how epistatic interactions between mutations determine alternative evolutionary pathways, using in vitro evolution of the antibiotic resistance enzyme TEM-1 b-lactamase. First, we describe the diversity of adaptive pathways among replicate lines during evolution for resistance to a novel antibiotic (cefotaxime). Consistent with the prediction of epistatic constraints, most lines increased resistance by acquiring three mutations in a fixed order. However, a few lines deviated from this pattern. Next, to test whether negative interactions between alternative initial substitutions drive this divergence, alleles containing initial substitutions from the deviating lines were evolved under identical conditions. Indeed, these alternative initial substitutions consistently led to lower adaptive peaks, involving more and other substitutions than those observed in the common pathway. We found that a combination of decreased enzymatic activity and lower folding cooperativity underlies negative sign epistasis in the clash between key mutations in the common and deviating lines (Gly238Ser and Arg164Ser, respectively). Our results demonstrate that epistasis contributes to contingency in protein evolution by amplifying the selective consequences of random mutations.

Heterotachy and Functional Shift in Protein Evolution

IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), 2003

Study of structure/function relationships constitutes an important field of research, especially for modification of protein function and drug design. However, the fact that rational design (i.e. the modification of amino acid sequences by means of directed mutagenesis, based on knowledge of the three-dimensional structure) appears to be much less efficient than irrational design (i.e. random mutagenesis followed by in vitro selection) clearly indicates that we understand little about the relationships between primary sequence, three-dimensional structure and function. The use of evolutionary approaches and concepts will bring insights to this difficult question. The increasing availability of multigene family sequences that has resulted from genome projects has inspired the creation of novel in silico evolutionary methods to predict details of protein function in duplicated (paralogous) proteins. The underlying principle of all such approaches is to compare the evolutionary properties of homologous sequence positions in paralogs. It has been proposed that the positions that show switches in substitution rate over time-i.e., 'heterotachous sites'-are good indicators of functional divergence. However, it appears that heterotachy is a much more general process, since most variable sites of homologous proteins with no evidence of functional shift are heterotachous. Similarly, it appears that switches in substitution rate are as frequent when paralogous sequences are compared as when orthologous sequences are compared. Heterotachy, instead of being indicative of functional shift, may more generally reflect a less specific process related to the many intra-and inter-molecular interactions compatible with a range of more or less equally viable protein conformations. These interactions will lead to different constraints on the nature of the primary sequences, consistently with theories suggesting the nonindependence of substitutions in proteins. However, a specific type of amino acid variation might constitute a good indicator of functional divergence: substitutions occurring at positions that are generally slowly evolving. Such substitutions at constrained sites are indeed much more frequent soon after gene duplication. The identification and analysis of these sites by complementing structural information with evolutionary data may represent a promising direction to future studies dealing with the functional characterization of an ever increasing number of multi-gene families identified by complete genome analysis. IUBMB Life, 55: 257-265, 2003

Unraveling adaptive evolution: how a single point mutation affects the protein coregulation network

Nature Genetics, 2006

Understanding the mechanisms of evolution requires identification of the molecular basis of the multiple (pleiotropic) effects of specific adaptive mutations. We have characterized the pleiotropic effects on protein levels of an adaptive single-base pair substitution in the coding sequence of a signaling pathway gene in the bacterium Pseudomonas fluorescens SBW25. We find 52 proteomic changes, corresponding to 46 identified proteins. None of these proteins is required for the adaptive phenotype. Instead, many are found within specific metabolic pathways associated with fitness-reducing (that is, antagonistic) effects of the mutation. The affected proteins fall within a single coregulatory network. The mutation 'rewires' this network by drawing particular proteins into tighter coregulating relationships. Although these changes are specific to the mutation studied, the quantitatively altered proteins are also affected in a coordinated way in other examples of evolution to the same niche.

Functional Divergence Prediction from Evolutionary Analysis: A Case Study of Vertebrate Hemoglobin

Molecular Biology and Evolution, 2003

It is a central assumption of evolution that gene duplications provide the genetic raw material from which to create proteins with new functions. The increasing availability in multigene family sequences that has resulted from genome projects has inspired the creation of novel in silico approaches to predict details of protein function. The underlying principle of all such approaches is to compare the evolutionary properties of homologous sequence positions in paralogous proteins. It has been proposed that the positions that show switches in substitution rate over time-i.e., ''heterotachous sites,'' are good indicators of functional divergence. Here, we analyzed the a and b paralogous subunits of hemoglobin in search for such signatures. We found as many heterotachous sites in comparisons between groups of paralogous subunits (a/b) as between orthologous ones (a/a, b/b). Thus, the importance of substitution rate shifts as predictors of specialization between protein subfamilies might be reconsidered. Instead, such shifts may reflect a more general process of protein evolution, consistent with the fact that they can be compatible with function conservation. As an alternative, we focused on those residues showing highly constrained states in two sequence groups, but different in each group, and we named them CBD (for ''constant but different''). As opposed to heterotachous positions, CBD sites were markedly overrepresented in paralogous (a/b) comparisons, as opposed to orthologous ones (a/a, b/b), identifying them as likely signatures of functional specialization between the two subunits. When superimposed onto the threedimensional structure of hemoglobin, CBD positions consistently appeared to cluster preferentially on inter-subunit surfaces, two contact areas crucial to function in vertebrate tetrameric hemoglobin. The identification and analysis of CBD sites by complementing structural information with evolutionary data may represent a promising direction for future studies dealing with the functional characterization of a growing number of multigene families identified by complete genome analyses.

Directional Darwinian Selection in proteins

BMC Bioinformatics, 2013

Background: Molecular evolution is a very active field of research, with several complementary approaches, including dN/dS, HON90, MM01, and others. Each has documented strengths and weaknesses, and no one approach provides a clear picture of how natural selection works at the molecular level. The purpose of this work is to present a simple new method that uses quantitative amino acid properties to identify and characterize directional selection in proteins. Methods: Inferred amino acid replacements are viewed through the prism of a single physicochemical property to determine the amount and direction of change caused by each replacement. This allows the calculation of the probability that the mean change in the single property associated with the amino acid replacements is equal to zero (H 0 : μ = 0; i.e., no net change) using a simple two-tailed t-test. Results: Example data from calanoid and cyclopoid copepod cytochrome oxidase subunit I sequence pairs are presented to demonstrate how directional selection may be linked to major shifts in adaptive zones, and that convergent evolution at the whole organism level may be the result of convergent protein adaptations. Conclusions: Rather than replace previous methods, this new method further complements existing methods to provide a holistic glimpse of how natural selection shapes protein structure and function over evolutionary time.

Weak Selection and Protein Evolution

Genetics, 2012

The “nearly neutral” theory of molecular evolution proposes that many features of genomes arise from the interaction of three weak evolutionary forces: mutation, genetic drift, and natural selection acting at its limit of efficacy. Such forces generally have little impact on allele frequencies within populations from generation to generation but can have substantial effects on long-term evolution. The evolutionary dynamics of weakly selected mutations are highly sensitive to population size, and near neutrality was initially proposed as an adjustment to the neutral theory to account for general patterns in available protein and DNA variation data. Here, we review the motivation for the nearly neutral theory, discuss the structure of the model and its predictions, and evaluate current empirical support for interactions among weak evolutionary forces in protein evolution. Near neutrality may be a prevalent mode of evolution across a range of functional categories of mutations and taxa...