Haptic Systems in User Interfaces (original) (raw)

Vibrotactile Feedback for Haptics and Telemanipulation: Survey, Concept and Experiment

2012

In telemanipulation and 3D virtual interactions it is important to transmit force sen- sation from the remote or virtual environment to the operator. Due to the weak points (control issues, robustness, cost) of real force feedback devices, methods where force is rendered on non-native sensory channels have grounds. In this paper, a survey of the related literature is presented and the concept of sensor-bridging type cognitive infocommunications based force reflecting schemes is discussed. A complete experimental infrastructure with hardware and soft- ware components is built providing a background for the investigation of the proposed methods from practical usability aspects. This environment is utilized in a pilot experiment with human participants providing substantial observations on the usability of sensor-bridging type vibro- tactile force feedback methods. The test confirms that vibrotactile glove equipped with shaftless vibration motors can be successfully applied as tactile/...

Using a Fingertip Tactile Device to Substitute Kinesthetic Feedback in Haptic Interaction

2010

A prototype of a joystick where the kinesthetic feedback is substituted by tactile feedback is proposed. Tactile feedback is provided by a wearable device able to apply vertical stress to the fingertip in contact with the joystick. To test the device, rigid wall rendering is considered. Preliminary experiments show that the sensation of touching a virtual wall using the force feedback provided by the electric motor of the joystick is nearly indistinguishable from the sensation felt by the user using the tactile display only. The proposed device does not suffer from typical stability issues of teleoperation systems and is intrinsically safe.

A Survey of Computer Haptics

2019

Computer haptics is an emerging technology that provides force feedback and tactile sensations to users as they interact with a virtual object. Haptic hardware provides sensory feedback that simulates physical properties and forces. The monitor enables sighted users to see computer generated images and audio speakers allow users to hear sounds, the haptic device makes it possible for blind or visually impaired users to feel force feedback and textures while they manipulate virtual two and three dimensional objects. The haptic device allows the user to interact with a virtual object, such as a planet surface feature or a cell membrane, using the sense of touch. Other physical properties can also be simulated, such as textures, magnetism, viscosity, vibration, or elasticity. Science related haptic software was used with students with visual impairments, the researcher found that adding forces to the visual display enhanced users understanding of the binding energy of a drug molecule. ...

Haptics: State of the Art Survey

This paper presents a novel approach to the understanding of Haptic and its related fields where haptics is used extensively like in display systems, communication, different types of haptic devices, and interconnection of haptic displays where virtual environment should feel like equivalent physical systems. There have been escalating research interests on areas relating to haptic modality in recent years, towards multiple fields. However, there seems to be limited studies in determining the various subfields and interfacing and related information on haptic user interfaces and its influence on the fields mentioned. This paper aims to bring forth the theory behind the essence of Haptics and its Subfields like haptic interfaces and its applications.

Displaying Sensed Tactile Cues with a Fingertip Haptic Device

Telerobotic systems enable humans to explore and manipulate remote environments for applications such as surgery and disaster response, but few such systems provide the operator with cutaneous feedback. This article presents a novel approach to remote cutaneous interaction; our method is compatible with any fingertip tactile sensor and any mechanical tactile display device, and it does not require a position/force or skin deformation model. Instead, it directly maps the sensed stimuli to the best possible input commands for the device’s motors using a data set recorded with the tactile sensor inside the device. As a proof of concept, we considered a haptic system composed of a BioTac tactile sensor, in charge of measuring contact deformations, and a custom 3-DoF cutaneous device with a flat contact platform, in charge of applying deformations to the user’s fingertip. To validate the proposed approach and discover its inherent tradeoffs, we carried out two remote tactile interaction experiments. The first one evaluated the error between the tactile sensations registered by the BioTac in a remote environment and the sensations created by the cutaneous device for six representative tactile interactions and 27 variations of the display algorithm. The normalized average errors in the best condition were 3.0% of the BioTac’s full 12-bit scale. The second experiment evaluated human subjects’ experiences for the same six remote interactions and eight algorithm variations. The average subjective rating for the best algorithm variation was 8.2 out of 10, where 10 is best.

Haptic Human-Computer Interaction

Lecture Notes in Computer Science, 2001

This paper presents a short review of the history surrounding the development of haptic feedback systems, from early manipulators and telerobots, used in the nuclear and subsea industries, to today's impressive desktop devices, used to support real-time interaction with 3D visual simulations, or Virtual Reality. Four examples of recent VR projects are described, illustrating the use of haptic feedback in ceramics, aerospace, surgical and defence applications. These examples serve to illustrate the premise that haptic feedback systems have evolved much faster than their visual display counterparts and are, today, delivering impressive peripheral devices that are truly usable by non-specialist users of computing technology.

State of art of haptic technology

2017

Haptic technology is tactile feedback technology. Haptic technology take advantage of user sense of touch by applying force, vibration or motion to the user. Haptic refers to manipulation and sensing through touch. In the proposed paper we have discussed an overview, important concepts in haptic technology, discusses the most broadly used haptics system like 'phantom', 'cyberglove' devices. We have explained in details how haptic technology implemented in various fields of study. In the proposed paper also includes how haptic technology works, its applications its advantages, its disadvantages, and its future applications.

Haptic interfaces and devices

Sensor Review, 2004

Haptic interfaces enable person‐machine communication through touch, and most commonly, in response to user movements. We comment on a distinct property of haptic interfaces, that of providing for simultaneous information exchange between a user and a machine. We also comment on the fact that, like other kinds of displays, they can take advantage of both the strengths and the limitations of human perception. The paper then proceeds with a description of the components and the modus operandi of haptic interfaces, followed by a list of current and prospective applications and a discussion of a cross‐section of current device designs.

VHP: Vibrotactile Haptics Platform for On-body Applications

The 34th Annual ACM Symposium on User Interface Software and Technology, 2021

Wearable vibrotactile devices have many potential applications, including sensory substitution for accessibility and notifcations. Currently, vibrotactile experimentation is done using large lab setups. However, most practical applications require standalone on-body devices and integration into small form factors. Such integration is time-consuming and requires expertise. With a goal to democratize wearable haptics we introduce VHP, a vibrotactile haptics platform. It includes a low-power miniature electronics board that can drive up to 12 independent channels of haptic signals with arbitrary waveforms at a 2 kHz sampling rate. The platform can drive vibrotactile actuators including linear resonant actuators and voice coils. The control hardware is battery-powered and programmable, and has multiple input options, including serial and Bluetooth, as well as the ability to synthesize haptic signals internally. We developed current-based loading sensing, thus allowing for unique features such as actuator auto-classifcation, and skin-contact quality sensing. Our technical evaluations showed that the system met all our initial design criteria and is an improvement over prior methods as it allows all-day wear, has low latency, has battery life between 3 and 25 hours, and can run 12 actuators simultaneously. We demonstrate unique applications that would be timeconsuming to develop without the VHP platform. We show that VHP can be used as bracelet, sleeve and phone-case form factors. The bracelet was programmed with an audio-to-tactile interface and was successfully worn for multiple days over months by developers. To facilitate more use of this platform, we open-source our design and plan to make the hardware widely available. We hope this work will motivate the use and study of vibrotactile all-day wearable devices. CCS CONCEPTS • Human-centered computing → Haptic devices. This work is licensed under a Creative Commons Attribution International 4.0 License.

Towards full-body haptic feedback: the design and deployment of a spatialized vibrotactile feedback system

2004

This paper presents work we have done on the design and implementation of an untethered system to deliver haptic cues for use in immersive virtual environments through a body-worn garment. Our system can control a large number of body-worn vibration units, each with individually controllable vibration intensity. Several design iterations have helped us to refine the system and improve such aspects as robustness, ease of donning and doffing, weight, power consumption, cable management, and support for many different types of feedback units, such as pager motors, solenoids, and muffin fans. In addition, experience integrating the system into an advanced virtual reality system has helped define some of the design constraints for creating wearable solutions, and to further refine our implementation.