Cardiac hypertrophy is enhanced in PPAR -/- mice in response to chronic pressure overload (original) (raw)
Related papers
Cardiac hypertrophy is enhanced in PPARa2/2 mice in response to chronic pressure overload
2008
Aims Peroxisome proliferator-activated receptor-a (PPARa) is a nuclear receptor regulating cardiac metabolism that also has anti-inflammatory properties. Since the activation of inflammatory signalling pathways is considered to be important in cardiac hypertrophy and fibrosis, it is anticipated that PPARa modulates cardiac remodelling. Accordingly, in this study the hypothesis was tested that the absence of PPARa aggravates the cardiac hypertrophic response
Histochemistry and Cell Biology, 2009
Myocardial fibrosis is an integral component of most cardiac pathologic conditions and contributes to the development of both systolic and diastolic dysfunction. Because of the availability of genetically manipulated animals, mouse models are essential for understanding the mechanisms involved in the pathogenesis of cardiac fibrosis. Accordingly, we characterized the inflammatory and fibrotic response in a mouse model of cardiac pressure overload due to transverse aortic constriction (TAC). Following TAC, mouse hearts exhibited induction of chemokines and proinflammatory cytokines, associated with macrophage, but not neutrophil, infiltration. Induction of inflammatory cytokines was followed by a late upregulation of transforming growth factor (TGF)-β isoforms, activation of the Smad2/3 and Smad1/5 pathways, induction of matricellular proteins, and deposition of collagen. Inflammatory activity decreased after 28 days of TAC; at this timepoint established fibrosis was noted, accompanied by ventricular dilation and systolic dysfunction. Late induction of inhibitory mediators, such as TGF-β, may play an essential role in the transition from inflammation to fibrosis by suppressing inflammatory gene synthesis while inducing matrix deposition. Our findings identify molecular mediators and pathways with a potential role in cardiac fibrosis laying the foundations for studies exploring the pathogenesis of fibrotic cardiac remodeling using genetically targeted mice.
Journal of Hypertension, 2011
Objectives-Pharmacological activation of peroxisome proliferator-activated receptor gamma (PPARγ) has been shown to attenuate pressure overload-induced cardiac fibrosis, suggesting that PPARγ has an antifibrotic effect. This study tested the hypothesis that there is a functional interaction between transforming growth factor-β (TGF-β) signaling and endogenous PPARγ expression in cardiac fibroblasts and pressure overloaded heart. Methods and results-We observed that, in response to pressure overload induced by transverse aortic constriction, left-ventricular PPARγ protein levels were decreased in wild-type mice, but increased in mice with an inducible overexpression of dominant negative mutation of the human TGF-β type II receptor (DnTGFβRII), in which TGF-β signaling is blocked. In isolated mouse cardiac fibroblasts, we demonstrated that TGF-β1 treatment decreased steady state PPARγ mRNA (−34%) and protein (−52%) levels, as well as PPARγ transcriptional activity (−53%). Chromatin immunoprecipitation analysis showed that TGF-β1 treatment increased binding of Smad2/3, Smad4 and histone deacetylase 1, and decreased binding of acetylated histone 3 to the PPARγ promoter in cardiac fibroblasts. Both pharmacological activation and overexpression of PPARγ significantly inhibited TGF-β1-induced extracellular matrix molecule expression in isolated cardiac fibroblasts, whereas treatment with the PPARγ agonist rosiglitazone inhibited, and treatment with the PPARγ antagonist T0070907 exacerbated chronic pressure overload-induced cardiac fibrosis and remodeling in wild-type mice in vivo. Conclusion-These data provide strong evidence that TGF-β1 directly suppresses PPARγ expression in cardiac fibroblasts via a transcriptional mechanism and suggest that the downregulation of endogenous PPARγ expression by TGF-β may be involved in pressure overloadinduced cardiac fibrosis.
Lipids in Health and Disease, 2010
Background: Pathological left ventricular (LV) hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA) up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1) assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2) evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart. Methods: Wild type (WT) and adiponectin-/-mice underwent transverse aortic constriction (TAC) and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated.
The Journal of Thoracic and Cardiovascular Surgery, 2011
Mitochondrial dysfunction has been suggested as a potential cause for heart failure. Pressure overload is a common cause for heart failure. However, implementing pressure overload in mice is considered a model for compensated hypertrophy but not for heart failure. We assessed the suitability of minimally invasive transverse aortic constriction to induce heart failure in C57BL/6 mice and assessed mitochondrial biogenesis and function. Minimally invasive transverse aortic constriction was performed through a ministernotomy without intubation (minimally invasive transverse aortic constriction, n = 68; sham operation, n = 43). Hypertrophy was assessed based on heart weight/body weight ratios and histologic analyses, and contractile function was assessed based on intracardiac Millar pressure measurements. Expression of selected metabolic genes was assessed with reverse transcription-polymerase chain reaction and Western blotting. Maximal respiratory capacity (state 3) of isolated mitochondria was measured with a Clark-type electrode. Survival was 62%. Within 7 weeks, minimally invasive transverse aortic constriction induced significant hypertrophy (heart weight/body weight ratio: 10.08±0.28 mg/g for minimally invasive transverse aortic constriction vs 4.66±0.07 mg/g for sham operation; n=68; P<.01). Fifty-seven percent of mice undergoing minimally invasive transverse aortic constriction displayed signs of heart failure (pleural effusions, dyspnea, weight loss, and dp/dtmax of 3114±422 mm Hg/s, P<.05). All of them had heart weight/body weight ratios of greater than 10. Mice undergoing minimally invasive transverse aortic constriction with heart weight/body weight ratios of less than 10 had normal contractile function (dp/dtmax of 6471±292 mm Hg/s vs dp/dtmax of 6933±205 mmHg/s in sham mice) and no clinical signs of heart failure. The mitochondrial coactivator peroxisome proliferator-activated receptor γ coactivator alpha (PGC-1α) was downregulated in failing hearts only. PGC-1α and fatty acid oxidation gene expression were also decreased in failing hearts. State 3 respiration of isolated mitochondria was significantly reduced in all hearts subjected to pressure overload. Contractile dysfunction and heart failure can be induced in wild-type mice by means of minimally invasive aortic constriction. Pressure overload-induced heart failure in mice is associated with mitochondrial dysfunction, as characterized by downregulation of PGC-1α and reduced oxidative capacity.
Circulation Research, 2005
Overexpression and activation of protein kinase C-ε (PKCε) results in myocardial hypertrophy. However, these observations do not establish that PKCε is required for the development of myocardial hypertrophy. Thus, we subjected PKCε-knockout (KO) mice to a hypertrophic stimulus by transverse aortic constriction (TAC). KO mice show normal cardiac morphology and function. TAC caused similar cardiac hypertrophy in KO and wild-type (WT) mice. However, KO mice developed more interstitial fibrosis and showed enhanced expression of collagen Iα1 and collagen III after TAC associated with diastolic dysfunction, as assessed by tissue Doppler echocardiography (Ea/Aa after TAC: WT 2.1±0.3 versus KO 1.0±0.2; P <0.05). To explore underlying mechanisms, we analyzed the left ventricular (LV) expression pattern of additional PKC isoforms (ie, PKCα, PKCβ, and PKCδ). After TAC, expression and activation of PKCδ protein was increased in KO LVs. Moreover, KO LVs displayed enhanced activation of p38 mi...
Circulation Research, 2005
Overexpression and activation of protein kinase C-ε (PKCε) results in myocardial hypertrophy. However, these observations do not establish that PKCε is required for the development of myocardial hypertrophy. Thus, we subjected PKCε-knockout (KO) mice to a hypertrophic stimulus by transverse aortic constriction (TAC). KO mice show normal cardiac morphology and function. TAC caused similar cardiac hypertrophy in KO and wild-type (WT) mice. However, KO mice developed more interstitial fibrosis and showed enhanced expression of collagen Iα1 and collagen III after TAC associated with diastolic dysfunction, as assessed by tissue Doppler echocardiography (Ea/Aa after TAC: WT 2.1±0.3 versus KO 1.0±0.2; P <0.05). To explore underlying mechanisms, we analyzed the left ventricular (LV) expression pattern of additional PKC isoforms (ie, PKCα, PKCβ, and PKCδ). After TAC, expression and activation of PKCδ protein was increased in KO LVs. Moreover, KO LVs displayed enhanced activation of p38 mi...