Combining noninvasive genetics and a new mammalian sex-linked marker provides new tools to investigate population size, structure and individual behaviour: An application to bats (original) (raw)
Related papers
Journal of Applied Ecology, 2007
1. Non-invasive genetic data analysed with capture-mark-recapture (CMR) models can be used to estimate population size, particularly for elusive and endangered species. Data generated from non-invasive genetic sampling are different, however, from conventional CMR data because individuals can be contacted several times within a single sampling session. Two methods have been proposed recently to accommodate this type of data, but no study has attempted to compare their estimates and evaluate their reliability compared with independent estimates of population size. 2. We investigated the reliability and accuracy of estimating the abundance of lesser horseshoe bats Rhinolophus hipposideros by genotyping DNA from droppings collected non-invasively at three colonies over 2 consecutive years. The number of times that each individual was 'contacted' (i.e. the number of droppings per individual) was used to estimate population size with two different published methods: a maximum likelihood and a Bayesian estimator. 3. Among the 586 samples extracted, 534 provided a complete genotype at six to eight microsatellite loci, which enabled a reliable discrimination of 165 individuals. Statistical estimates of colony sizes often included independent estimates obtained from visual counts, validating the method. Discrepancies appeared when capture heterogeneity was not taken into account while it occurred. 4. Synthesis and applications. We have taken a first step towards improving methods of estimating numbers of bats by demonstrating that genetic data produced from bat faecal DNA are of high quality and can provide accurate estimates of population size even when samples are taken during only one sampling session. Such protocols provide valuable management tools for elusive and rare species in general. The method is relatively easy and cost-efficient because only one sampling session is required.
HAL (Le Centre pour la Communication Scientifique Directe), 2007
1. Non-invasive genetic data analysed with capture-mark-recapture (CMR) models can be used to estimate population size, particularly for elusive and endangered species. Data generated from non-invasive genetic sampling are different, however, from conventional CMR data because individuals can be contacted several times within a single sampling session. Two methods have been proposed recently to accommodate this type of data, but no study has attempted to compare their estimates and evaluate their reliability compared with independent estimates of population size. 2. We investigated the reliability and accuracy of estimating the abundance of lesser horseshoe bats Rhinolophus hipposideros by genotyping DNA from droppings collected non-invasively at three colonies over 2 consecutive years. The number of times that each individual was 'contacted' (i.e. the number of droppings per individual) was used to estimate population size with two different published methods: a maximum likelihood and a Bayesian estimator. 3. Among the 586 samples extracted, 534 provided a complete genotype at six to eight microsatellite loci, which enabled a reliable discrimination of 165 individuals. Statistical estimates of colony sizes often included independent estimates obtained from visual counts, validating the method. Discrepancies appeared when capture heterogeneity was not taken into account while it occurred. 4. Synthesis and applications. We have taken a first step towards improving methods of estimating numbers of bats by demonstrating that genetic data produced from bat faecal DNA are of high quality and can provide accurate estimates of population size even when samples are taken during only one sampling session. Such protocols provide valuable management tools for elusive and rare species in general. The method is relatively easy and cost-efficient because only one sampling session is required.
Journal of Applied Ecology, 2007
1. Non-invasive genetic data analysed with capture-mark-recapture (CMR) models can be used to estimate population size, particularly for elusive and endangered species. Data generated from non-invasive genetic sampling are different, however, from conventional CMR data because individuals can be contacted several times within a single sampling session. Two methods have been proposed recently to accommodate this type of data, but no study has attempted to compare their estimates and evaluate their reliability compared with independent estimates of population size. 2. We investigated the reliability and accuracy of estimating the abundance of lesser horseshoe bats Rhinolophus hipposideros by genotyping DNA from droppings collected non-invasively at three colonies over 2 consecutive years. The number of times that each individual was 'contacted' (i.e. the number of droppings per individual) was used to estimate population size with two different published methods: a maximum likelihood and a Bayesian estimator. 3. Among the 586 samples extracted, 534 provided a complete genotype at six to eight microsatellite loci, which enabled a reliable discrimination of 165 individuals. Statistical estimates of colony sizes often included independent estimates obtained from visual counts, validating the method. Discrepancies appeared when capture heterogeneity was not taken into account while it occurred. 4. Synthesis and applications. We have taken a first step towards improving methods of estimating numbers of bats by demonstrating that genetic data produced from bat faecal DNA are of high quality and can provide accurate estimates of population size even when samples are taken during only one sampling session. Such protocols provide valuable management tools for elusive and rare species in general. The method is relatively easy and cost-efficient because only one sampling session is required.
Genetic non-invasive sampling (gNIS) as a cost-effective tool for monitoring elusive small mammals
European Journal of Wildlife Research
Genetic non-invasive sampling (gNIS) may provide valuable information for population monitoring, as it allows inferences of population density and key behavioural traits such as dispersal, kinship and reproduction. Despite its enormous potential, gNIS has rarely been applied to small mammals, for which live-trapping is still the most commonly used sampling method. Here we evaluated the applicability and cost-effectiveness of gNIS compared with live-trapping, to monitor a metapopulation of an Iberian endemic and elusive rodent: the Cabrera vole (Microtus cabrerae). We compared the genetic diversity, kinship and dispersal movements inferred using both methods. For that, we optimised microsatellite markers for individual identification of M. cabrerae, using both tissue (n = 31) and faecal samples (n = 323) collected from a metapopulation in southwestern Iberia. An initial set of 20 loci was optimised for tissue samples, from which 11 were selected to amplify in faecal samples. Overall, gNIS revealed a higher number of identified individuals (65) than live-trapping (31), and the estimated genetic diversity was similar using data from tissues and gNIS. Kinship analysis showed a higher number of inferred relationships and dispersal events when including gNIS, and indicated absence of sex-biased dispersal. The total cost (fieldwork and genetic analysis) of each genotype obtained through live-trapping was three times greater than for gNIS. Our data strongly supports the high potential and costeffectiveness of gNIS for monitoring populations of elusive and/or threatened small mammals. We also illustrate how this genetic tool can be logistically feasible in conservation.
Evaluation of non-invasive genetic sampling methods for estimating tiger population size
There is often a conservation need to estimate population abundances of elusive, low-density, wide-ranging carnivore species. Because of logistical constraints, investigators often employ non-invasive 'captures' that may involve 'genetic' or 'photographic' sampling in such cases. Established capture-recapture (CR) methods offer a powerful analytical tool for such data. In this paper, we developed a rigorous combination of captive, laboratory and field-based protocols for identifying individual tigers (Panthera tigris) from fecal DNA. We explored trade-offs between numbers of microsatellite loci used for reliable individual identifications and the need for higher capture rates for robust analyses. Our field surveys of scats were also specifically designed for CR analyses, enabling us to test for population closure, estimate capture probabilities and tiger abundance. Consequently, we could compare genetic capture estimates to results of a 'photographic capture' study of tigers at the same site. The estimates using the heterogeneity model (M h -Jackknife) for fecal DNA survey were [M t+1 = 26; p ¼ 0:09 andN (SʽN)=66 (12.98)] in close agreement with those from the photographic survey [(M t+1 = 29; p ¼ 0:04 andN (SʽN) = 66 (13.8)]. Our results revealed that designing field surveys of scats explicitly for CR data analyses generate reliable estimates of capture probability and abundance for elusive, low density species such as tigers. The study also highlights the importance of rigorous field survey and laboratory protocols for reliable abundance estimation in contexts where other approaches such as camera-trapping or physical tagging of animals may not be practical options.
Bridging the gaps between non-invasive genetic sampling and population parameter estimation
European Journal of Wildlife Research, 2011
Reliable estimates of population parameters are necessary for effective management and conservation actions. The use of genetic data for capture-recapture (CR) analyses has become an important tool to estimate population parameters for elusive species. Strong emphasis has been placed on the genetic analysis of non-invasive samples, or on the CR analysis; however, little attention has been paid to the simultaneous overview of the full noninvasive genetic CR analysis, and the important insights gained by understanding the interactions between the different parts of the technique. Here, we review the three main steps of the approach: designing the appropriate sampling scheme, conducting the genetic lab analysis, and applying the CR analysis to the genetic results; and present a synthesis of this topic with the aim of discussing the primary limitations and sources of error. We discuss the importance of the integration between these steps, the unique situations which occur with non-invasive studies, the role of ecologists and geneticists throughout the process, the problem of error propagation, and the sources of biases which can be present in the final estimates. We highlight the importance of team collaboration and offer a series of recommendations to wildlife ecologists who are not familiar with this topic yet but may want to use this tool to monitor populations through time.
Evaluation of Noninvasive Genetic Sampling Methods for Felid and Canid Populations
Journal of Wildlife Management, 2007
Conventional methods for monitoring cougar, Puma concolor, populations involve capture, tagging, and radio-collaring, but these methods are time-consuming, expensive, and logistically challenging. For difficult-to-study species such as cougars, noninvasive genetic sampling (NGS) may be a useful alternative. The ability to identify individuals from samples collected through NGS methods provides many opportunities for developing population-monitoring tools, but the utility of these survey methods is dependent upon collection of samples and accurate genotyping of those samples. In January 2003, we initiated a 3-yr evaluation of NGS methods for cougars using a radio-collared population in Yellowstone National Park (YNP), USA. Our goals were to: 1) determine which DNA collection method, hair snares or snow tracking, provided a better method for obtaining samples for genetic analysis, 2) evaluate reliability of the genetic data derived from hair samples collected in the field, and 3) evaluate the potential of NGS for demographic monitoring of cougar populations. Snow tracking yielded more hair samples and was more cost effective than snagging hair with rub pads. Samples collected from bed sites and natural hair snags (e.g., branch tips, thorn bushes) while snow tracking accurately identified and sexed 22 individuals (9 F, 13 M). The ratio of the count from snow tracking to the count from radio-telemetry was 15:24 in winter 2004, 13:12 in 2005, and 22:29 for both years combined. Annual capture probabilities for obtaining DNA from snow tracking varied considerably between years for females (0.42 in 2004 and 0.88 in 2005) but were more consistent for males (0.77 in 2004 and 0.88 in 2005). Our results indicate that snow tracking can be an efficient, reliable NGS method for cougars in YNP and has potential for estimating demographic and genetic parameters of other carnivore populations in similar climates. ß 2011 The Wildlife Society.
Estimating Animal Abundance Using Noninvasive Dna Sampling: Promise and Pitfalls
Ecological Applications, 2000
Advances in molecular biology offer promise to the study of demographic characteristics of rare or hard-to-capture species, because individuals can now be identified through noninvasive sampling such as fecal collection or hair snags. However, individual genotyping using such methods currently leads to a novel problem that we call a ''shadow effect,'' because some animals not captured previously are believed to be recaptures due to their DNA profile being an indistinguishable shadow of previously captured animals. We evaluate the impact of the shadow effect on the two methods most commonly used in applied population ecology to estimate the size of closed populations: Lincoln-Petersen and multiple-recapture estimators in program CAPTURE. We find that the shadow effect can cause a negative bias in the estimates of both the number of different animals and the number of different genotypes. Furthermore, with Lincoln-Petersen estimators, the shadow effect can cause estimated confidence intervals to decrease even as bias increases. Because the bias arises from heterogeneity in apparent ''capture'' probabilities for animals with genetic shadows vs. those without, a model in program CAPTURE that is robust to capture heterogeneity (M h-jackknife ) does not underestimate the number of genotypes in the population and only slightly underestimates the total number of individuals. As the shadow effect increases, CAPTURE is better able to correctly identify heterogeneity in capture probability and to pick M h-jackknife , so that the higher levels of shadow effect have less bias than medium levels. The shadow effect will occur in all estimates of demographic rates (including survival) that use DNA sampling to determine individual identity, but it can be minimized by increasing the number of individual loci sampled.
What Molecules Can Tell Us about Populations: Choosing and Using a Molecular Marker
Ecology, 1998
The rapid development of molecular techniques offers a palette of technical approaches for population biologists interested in a wide range of questions. For example, these tools can be used to determine individual reproductive success or to measure rates of genetic divergence among populations. Which technique is most appropriate for a particular question depends upon (1) the extent of genetic polymorphism required to best answer the question, (2) the analytical or statistical approaches available for the technique's application, and (3) the pragmatics of time and costs of materials. Here we evaluate the application of several major techniques (protein electrophoresis, nuclear and mitochondrial RFLPs [restriction fragment length polymorphisms], minisatellite and microsatellite VNTRs [variable number tandem repeats], RAPDs [random amplified polymorphic DNA], and DNA sequencing) to an array of questions regarding individual identification, exclusion and assignment of parentage, and various levels of population structure. In our evaluation, we briefly explain the technical components of each molecular approach and assess whether the typical outcomes expected from each approach will provide useful information as applied to each level of inquiry. For studies of population genetic structure, protein electrophoresis remains a powerful tool for most taxa, although techniques based on nucleic acids (particularly DNA sequencing and mitochondrial DNA RFLPs) are useful here as well. Recently developed nucleic acid techniques (e.g., VNTRs) can often identify enough genetic variability to address questions of self-identification or parentage. Some of the newest techniques (RAPDs and microsatellites) are potentially useful across a number of levels of inquiry, although procedures for adopting them are still developing.