Decidability of order-based modal logics (original) (raw)
2017, Journal of Computer and System Sciences
Decidability of the validity problem is established for a family of many-valued modal logics, notably Gödel modal logics, where propositional connectives are evaluated according to the order of values in a complete sublattice of the real unit interval [0, 1], and box and diamond modalities are evaluated as infima and suprema over (many-valued) Kripke frames. If the sublattice is infinite and the language is sufficiently expressive, then the standard semantics for such a logic lacks the finite model property. It is shown here, however, that, given certain regularity conditions, the finite model property holds for a new semantics for the logic, providing a basis for establishing decidability and PSPACE-completeness. Similar results are also established for S5 logics that coincide with one-variable fragments of first-order many-valued logics. In particular, a first proof is given of $ Preliminary results from this work were reported in the proceedings of TACL 2013 (as an extended abstract) and WoLLIC 2013 [8].