Machine learning based knowledge discovery and modeling of silicon content of molten iron from a blast furnace (original) (raw)

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (45)

  1. Abhale, P.B., Nag, S., Bapat, Y., Kulkarni, A., Viswanathan, N.N., Padmapal, 2022. Development of 2D Steady-State Mathematical Model for Blast Furnace Using OpenFOAM®. Metall Mater Trans B 53, 3469-3491. https://doi.org/10.1007/s11663-022-02610-6
  2. Abhale, P.B., Viswanathan, N.N., Saxén, H., 2020. Numerical modelling of blast furnace -Evolution and recent trends. Mineral Processing and Extractive Metallurgy 129, 166-183. https://doi.org/10.1080/25726641.2020.1733357
  3. Agrawal, A., Kothari, A.K., Kumar, A., Singh, M.K., Dubey, S.K., Ramna, R.V., Nath, S., 2019. Advances in thermal level measurement techniques using mathematical models, statistical models and decision support systems in blast furnace. Metall. Res. Technol. 116, 421. https://doi.org/10.1051/metal/2019019
  4. Austin, P.R., Nogami, H., Yagi, J., 1997. A Mathematical Model for Blast Furnace Reaction Analysis Based on the Four Fluid Model. ISIJ International 37, 748-755. https://doi.org/10.2355/isijinternational.37.748
  5. Bair, E., Hastie, T., Paul, D., Tibshirani, R., 2006. Prediction by Supervised Principal Components. Journal of the American Statistical Association 101, 119-137. https://doi.org/10.1198/016214505000000628
  6. Bhattacharya, T., 2005. Prediction of Silicon Content in Blast Furnace Hot Metal Using Partial Least Squares (PLS). ISIJ Int. 45, 1943-1945. https://doi.org/10.2355/isijinternational.45.1943
  7. Breiman, L., 2001. Random Forests. Machine Learning 45, 5-32. https://doi.org/10.1023/A:1010933404324
  8. Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, San Francisco California USA, pp. 785-794. https://doi.org/10.1145/2939672.2939785
  9. Chouakria, A.D., Nagabhushan, P.N., 2007. Adaptive dissimilarity index for measuring time series proximity. ADAC 1, 5-21. https://doi.org/10.1007/s11634-006-0004-6 https://doi.org/10.26434/chemrxiv-2024-51zj6 ORCID: https://orcid.org/0000-0001-9061-7810 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0
  10. Chuanhou Gao, Ling Jian, Xueyi Liu, Jiming Chen, Youxian Sun, 2011. Data-Driven Modeling Based on Volterra Series for Multidimensional Blast Furnace System. IEEE Trans. Neural Netw. 22, 2272-2283. https://doi.org/10.1109/TNN.2011.2175945
  11. Diniz, A.P.M., Côco, K.F., Gomes, F.S.V., Salles, J.L.F., 2021. Forecasting Model of Silicon Content in Molten Iron Using Wavelet Decomposition and Artificial Neural Networks. Metals 11, 1001. https://doi.org/10.3390/met11071001
  12. Dong, X., Yu, A., Yagi, J., Zulli, P., 2007. Modelling of Multiphase Flow in a Blast Furnace: Recent Developments and Future Work. ISIJ Int. 47, 1553-1570. https://doi.org/10.2355/isijinternational.47.1553
  13. Friedman, J.H., 2001. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics 29, 1189-1232.
  14. Friedman, J.H., 1991. Multivariate Adaptive Regression Splines. Ann. Statist. 19. https://doi.org/10.1214/aos/1176347963
  15. Gao, C., Lin, Q., Ni, J., Guo, W., Li, Q., 2021. A Nonuniform Delay-Coordinate Embedding-Based Multiscale Predictor for Blast Furnace Systems. IEEE Trans. Contr. Syst. Technol. 29, 2223- 2230. https://doi.org/10.1109/TCST.2020.3023072
  16. Gaopeng, W., 2011. The prediction model of silicon content in hot metal based on LS-SVR optimized by estimation distributed algorithm, in: 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference. IEEE, Chongqing, pp. 267-270. https://doi.org/10.1109/ITAIC.2011.6030201
  17. Gao-peng, W., Hai-peng, Z., Zhen-yu, Y., Rui-ji, Z., 2021a. Classification of blast furnace internal state based on FLS and its application in furnace temperature prediction. E3S Web Conf. 252, 02041. https://doi.org/10.1051/e3sconf/202125202041
  18. Gao-peng, W., Zhen-yu, Y., Hai-peng, Z., Rui-ji, Z., 2021b. Silicon content prediction of hot metal in blast furnace based on attention mechanism and CNN-IndRNN model. E3S Web Conf. 252, 02025. https://doi.org/10.1051/e3sconf/202125202025
  19. https://doi.org/10.26434/chemrxiv-2024-51zj6 ORCID: https://orcid.org/0000-0001-9061-7810 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0
  20. Geerdes, M., Chaigneau, R., Lingiardi, O., Molenaar, R., Van Opbergen, R., Sha, Y., 2020. Modern blast furnace ironmaking: an introduction, Fourth edition. ed. IOS Press, Amsterdam, The Netherlands.
  21. Jian, L., Song, Y., Shen, S., Wang, Y., Yin, H., 2015. Adaptive Least Squares Support Vector Machine Predictor for Blast Furnace Ironmaking Process. ISIJ International 55, 845-850. https://doi.org/10.2355/isijinternational.55.845
  22. Li, J., Hua, C., Guan, X., 2017. Inputs screening of hot metal silicon content model on blast furnace, in: 2017 Chinese Automation Congress (CAC). IEEE, Jinan, pp. 3747-3752. https://doi.org/10.1109/CAC.2017.8243432
  23. Li, J., Hua, C., Yang, Y., Guan, X., 2018. Bayesian Block Structure Sparse Based T-S Fuzzy Modeling for Dynamic Prediction of Hot Metal Silicon Content in the Blast Furnace. IEEE Trans. Ind. Electron. 65, 4933-4942. https://doi.org/10.1109/TIE.2017.2772141
  24. Li, J., Yang, Z., Pian, J., 2013. Prediction of Silicon Content in Hot Metal Based On Integrated Neural Network. JCIT 8, 399-406. https://doi.org/10.4156/jcit.vol8.issue10.49
  25. Liu, X., Wang, Y., Wang, W., 2007. Prediction of Silicon Content in Hot Metal Based on Bayesian Network, in: Third International Conference on Natural Computation (ICNC 2007) Vol V. IEEE, Haikou, China, pp. 446-450. https://doi.org/10.1109/ICNC.2007.563
  26. Lu, Y.-H., Tsai, C.-F., Yen, D.C., 2010. Discovering important factors of intangible firm value by association rules. IJDAR 10. https://doi.org/10.4192/1577-8517-v10\_3
  27. Nelwamondo, F.V., Mohamed, S., Marwala, T., 2007. Missing data: A comparison of neural network and expectation maximization techniques. Current Science 93, 1514-1521.
  28. Niwa, Y., Sumigama, T., Maki, A., Ito, H., Inoue, H., Tamura, T., 1991. Blast furnace operation for low silicon content at Fukuyama No.5 blast furnace. ISIJ International 31, 487-493. https://doi.org/10.2355/isijinternational.31.487
  29. Nurkkala, A., Pettersson, F., Saxén, H., 2011. Nonlinear Modeling Method Applied to Prediction of Hot Metal Silicon in the Ironmaking Blast Furnace. Ind. Eng. Chem. Res. 50, 9236-9248. https://doi.org/10.1021/ie200274q https://doi.org/10.26434/chemrxiv-2024-51zj6 ORCID: https://orcid.org/0000-0001-9061-7810 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0
  30. Roeplal, R., Pang, Y., Adema, A., Van Der Stel, J., Schott, D., 2023. Modelling of phenomena affecting blast furnace burden permeability using the Discrete Element Method (DEM) -A review. Powder Technology 415, 118161. https://doi.org/10.1016/j.powtec.2022.118161
  31. Saxén, H., Pettersson, F., 2007. Nonlinear Prediction of the Hot Metal Silicon Content in the Blast Furnace. ISIJ Int. 47, 1732-1737. https://doi.org/10.2355/isijinternational.47.1732
  32. Saxén, J.-E., Saxén, H., Toivonen, H.T., 2016. Identification of switching linear systems using self- organizing models with application to silicon prediction in hot metal. Applied Soft Computing 47, 271-280. https://doi.org/10.1016/j.asoc.2016.05.048
  33. Shi-hua, L., Jiu-sun, Z., 2007. BF Hot Metal Silicon Content Prediction Using Unsupervised Fuzzy Clustering, in: Cao, B.-Y. (Ed.), Fuzzy Information and Engineering, Advances in Soft Computing. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 411-418. https://doi.org/10.1007/978-3-540-71441-5\_45
  34. Smola, A.J., Schölkopf, B., 2004. A tutorial on support vector regression. Statistics and Computing 14, 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
  35. Tang, X., Zhuang, L., Jiang, C., 2009. Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization. Expert Systems with Applications 36, 11853-11857. https://doi.org/10.1016/j.eswa.2009.04.015
  36. Tsai, C.-F., Chen, M.-Y., 2010. Variable selection by association rules for customer churn prediction of multimedia on demand. Expert Systems with Applications 37, 2006-2015. https://doi.org/10.1016/j.eswa.2009.06.076
  37. Wang, G., 2018. Silicon Prediction Model of Blast Furnace Based on ARX and PCR, in: 2018 13th World Congress on Intelligent Control and Automation (WCICA). IEEE, Changsha, China, pp. 1214-1220. https://doi.org/10.1109/WCICA.2018.8630337
  38. Wang, L., Zeng, J., Liang, X., He, Y., Luo, S., Cai, J., 2019. Soft Sensing of a Nonlinear Multimode Process Using a Self Organizing Model and Conditional Probability Density Analysis. Ind. Eng. Chem. Res. 58, 14267-14274. https://doi.org/10.1021/acs.iecr.9b02651 https://doi.org/10.26434/chemrxiv-2024-51zj6 ORCID: https://orcid.org/0000-0001-9061-7810 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0
  39. Wang, W.H., Liu, J.Q., Liu, X.Y., 2015. Feature Selection and Long-term Modeling for the Blast Furnace Ironmaking Process Based on Random Forests. TOAUTOCJ 7, 966-973. https://doi.org/10.2174/1874444301507010966
  40. Wang, X., Hu, T., Tang, L., 2022. A Multiobjective Evolutionary Nonlinear Ensemble Learning With Evolutionary Feature Selection for Silicon Prediction in Blast Furnace. IEEE Trans. Neural Netw. Learning Syst. 33, 2080-2093. https://doi.org/10.1109/TNNLS.2021.3059784
  41. Wang, Y., Liu, X., 2011. Prediction of silicon content in hot metal based on SVM and mutual information for feature selection. Journal of Information & Computational Science 8, 4275- 4283.
  42. You, X., Yang, N., Wu, L., Diao, J., 2011. The Necessity of Hot Metal Desiliconization Process. Procedia Earth and Planetary Science 2, 116-121. https://doi.org/10.1016/j.proeps.2011.09.019
  43. Yu, X., Shen, Y., 2022. Transient State modeling of Industry-scale ironmaking blast furnaces. Chemical Engineering Science 248, 117185. https://doi.org/10.1016/j.ces.2021.117185
  44. Zeng, J., Liu, X., Gao, C., Luo, S., Jian, L., 2008. Wiener Model Identification of Blast Furnace Ironmaking Process. ISIJ Int. 48, 1734-1738. https://doi.org/10.2355/isijinternational.48.1734
  45. Zhao, X., Fang, Y., Liu, L., Xu, M., Zhang, P., 2020. Ameliorated moth-flame algorithm and its application for modeling of silicon content in liquid iron of blast furnace based fast learning network. Applied Soft Computing 94, 106418. https://doi.org/10.1016/j.asoc.2020.106418 https://doi.org/10.26434/chemrxiv-2024-51zj6 ORCID: https://orcid.org/0000-0001-9061-7810 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0