Machine learning based knowledge discovery and modeling of silicon content of molten iron from a blast furnace (original) (raw)
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (45)
- Abhale, P.B., Nag, S., Bapat, Y., Kulkarni, A., Viswanathan, N.N., Padmapal, 2022. Development of 2D Steady-State Mathematical Model for Blast Furnace Using OpenFOAM®. Metall Mater Trans B 53, 3469-3491. https://doi.org/10.1007/s11663-022-02610-6
- Abhale, P.B., Viswanathan, N.N., Saxén, H., 2020. Numerical modelling of blast furnace -Evolution and recent trends. Mineral Processing and Extractive Metallurgy 129, 166-183. https://doi.org/10.1080/25726641.2020.1733357
- Agrawal, A., Kothari, A.K., Kumar, A., Singh, M.K., Dubey, S.K., Ramna, R.V., Nath, S., 2019. Advances in thermal level measurement techniques using mathematical models, statistical models and decision support systems in blast furnace. Metall. Res. Technol. 116, 421. https://doi.org/10.1051/metal/2019019
- Austin, P.R., Nogami, H., Yagi, J., 1997. A Mathematical Model for Blast Furnace Reaction Analysis Based on the Four Fluid Model. ISIJ International 37, 748-755. https://doi.org/10.2355/isijinternational.37.748
- Bair, E., Hastie, T., Paul, D., Tibshirani, R., 2006. Prediction by Supervised Principal Components. Journal of the American Statistical Association 101, 119-137. https://doi.org/10.1198/016214505000000628
- Bhattacharya, T., 2005. Prediction of Silicon Content in Blast Furnace Hot Metal Using Partial Least Squares (PLS). ISIJ Int. 45, 1943-1945. https://doi.org/10.2355/isijinternational.45.1943
- Breiman, L., 2001. Random Forests. Machine Learning 45, 5-32. https://doi.org/10.1023/A:1010933404324
- Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, San Francisco California USA, pp. 785-794. https://doi.org/10.1145/2939672.2939785
- Chouakria, A.D., Nagabhushan, P.N., 2007. Adaptive dissimilarity index for measuring time series proximity. ADAC 1, 5-21. https://doi.org/10.1007/s11634-006-0004-6 https://doi.org/10.26434/chemrxiv-2024-51zj6 ORCID: https://orcid.org/0000-0001-9061-7810 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0
- Chuanhou Gao, Ling Jian, Xueyi Liu, Jiming Chen, Youxian Sun, 2011. Data-Driven Modeling Based on Volterra Series for Multidimensional Blast Furnace System. IEEE Trans. Neural Netw. 22, 2272-2283. https://doi.org/10.1109/TNN.2011.2175945
- Diniz, A.P.M., Côco, K.F., Gomes, F.S.V., Salles, J.L.F., 2021. Forecasting Model of Silicon Content in Molten Iron Using Wavelet Decomposition and Artificial Neural Networks. Metals 11, 1001. https://doi.org/10.3390/met11071001
- Dong, X., Yu, A., Yagi, J., Zulli, P., 2007. Modelling of Multiphase Flow in a Blast Furnace: Recent Developments and Future Work. ISIJ Int. 47, 1553-1570. https://doi.org/10.2355/isijinternational.47.1553
- Friedman, J.H., 2001. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics 29, 1189-1232.
- Friedman, J.H., 1991. Multivariate Adaptive Regression Splines. Ann. Statist. 19. https://doi.org/10.1214/aos/1176347963
- Gao, C., Lin, Q., Ni, J., Guo, W., Li, Q., 2021. A Nonuniform Delay-Coordinate Embedding-Based Multiscale Predictor for Blast Furnace Systems. IEEE Trans. Contr. Syst. Technol. 29, 2223- 2230. https://doi.org/10.1109/TCST.2020.3023072
- Gaopeng, W., 2011. The prediction model of silicon content in hot metal based on LS-SVR optimized by estimation distributed algorithm, in: 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference. IEEE, Chongqing, pp. 267-270. https://doi.org/10.1109/ITAIC.2011.6030201
- Gao-peng, W., Hai-peng, Z., Zhen-yu, Y., Rui-ji, Z., 2021a. Classification of blast furnace internal state based on FLS and its application in furnace temperature prediction. E3S Web Conf. 252, 02041. https://doi.org/10.1051/e3sconf/202125202041
- Gao-peng, W., Zhen-yu, Y., Hai-peng, Z., Rui-ji, Z., 2021b. Silicon content prediction of hot metal in blast furnace based on attention mechanism and CNN-IndRNN model. E3S Web Conf. 252, 02025. https://doi.org/10.1051/e3sconf/202125202025
- https://doi.org/10.26434/chemrxiv-2024-51zj6 ORCID: https://orcid.org/0000-0001-9061-7810 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0
- Geerdes, M., Chaigneau, R., Lingiardi, O., Molenaar, R., Van Opbergen, R., Sha, Y., 2020. Modern blast furnace ironmaking: an introduction, Fourth edition. ed. IOS Press, Amsterdam, The Netherlands.
- Jian, L., Song, Y., Shen, S., Wang, Y., Yin, H., 2015. Adaptive Least Squares Support Vector Machine Predictor for Blast Furnace Ironmaking Process. ISIJ International 55, 845-850. https://doi.org/10.2355/isijinternational.55.845
- Li, J., Hua, C., Guan, X., 2017. Inputs screening of hot metal silicon content model on blast furnace, in: 2017 Chinese Automation Congress (CAC). IEEE, Jinan, pp. 3747-3752. https://doi.org/10.1109/CAC.2017.8243432
- Li, J., Hua, C., Yang, Y., Guan, X., 2018. Bayesian Block Structure Sparse Based T-S Fuzzy Modeling for Dynamic Prediction of Hot Metal Silicon Content in the Blast Furnace. IEEE Trans. Ind. Electron. 65, 4933-4942. https://doi.org/10.1109/TIE.2017.2772141
- Li, J., Yang, Z., Pian, J., 2013. Prediction of Silicon Content in Hot Metal Based On Integrated Neural Network. JCIT 8, 399-406. https://doi.org/10.4156/jcit.vol8.issue10.49
- Liu, X., Wang, Y., Wang, W., 2007. Prediction of Silicon Content in Hot Metal Based on Bayesian Network, in: Third International Conference on Natural Computation (ICNC 2007) Vol V. IEEE, Haikou, China, pp. 446-450. https://doi.org/10.1109/ICNC.2007.563
- Lu, Y.-H., Tsai, C.-F., Yen, D.C., 2010. Discovering important factors of intangible firm value by association rules. IJDAR 10. https://doi.org/10.4192/1577-8517-v10\_3
- Nelwamondo, F.V., Mohamed, S., Marwala, T., 2007. Missing data: A comparison of neural network and expectation maximization techniques. Current Science 93, 1514-1521.
- Niwa, Y., Sumigama, T., Maki, A., Ito, H., Inoue, H., Tamura, T., 1991. Blast furnace operation for low silicon content at Fukuyama No.5 blast furnace. ISIJ International 31, 487-493. https://doi.org/10.2355/isijinternational.31.487
- Nurkkala, A., Pettersson, F., Saxén, H., 2011. Nonlinear Modeling Method Applied to Prediction of Hot Metal Silicon in the Ironmaking Blast Furnace. Ind. Eng. Chem. Res. 50, 9236-9248. https://doi.org/10.1021/ie200274q https://doi.org/10.26434/chemrxiv-2024-51zj6 ORCID: https://orcid.org/0000-0001-9061-7810 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0
- Roeplal, R., Pang, Y., Adema, A., Van Der Stel, J., Schott, D., 2023. Modelling of phenomena affecting blast furnace burden permeability using the Discrete Element Method (DEM) -A review. Powder Technology 415, 118161. https://doi.org/10.1016/j.powtec.2022.118161
- Saxén, H., Pettersson, F., 2007. Nonlinear Prediction of the Hot Metal Silicon Content in the Blast Furnace. ISIJ Int. 47, 1732-1737. https://doi.org/10.2355/isijinternational.47.1732
- Saxén, J.-E., Saxén, H., Toivonen, H.T., 2016. Identification of switching linear systems using self- organizing models with application to silicon prediction in hot metal. Applied Soft Computing 47, 271-280. https://doi.org/10.1016/j.asoc.2016.05.048
- Shi-hua, L., Jiu-sun, Z., 2007. BF Hot Metal Silicon Content Prediction Using Unsupervised Fuzzy Clustering, in: Cao, B.-Y. (Ed.), Fuzzy Information and Engineering, Advances in Soft Computing. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 411-418. https://doi.org/10.1007/978-3-540-71441-5\_45
- Smola, A.J., Schölkopf, B., 2004. A tutorial on support vector regression. Statistics and Computing 14, 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
- Tang, X., Zhuang, L., Jiang, C., 2009. Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization. Expert Systems with Applications 36, 11853-11857. https://doi.org/10.1016/j.eswa.2009.04.015
- Tsai, C.-F., Chen, M.-Y., 2010. Variable selection by association rules for customer churn prediction of multimedia on demand. Expert Systems with Applications 37, 2006-2015. https://doi.org/10.1016/j.eswa.2009.06.076
- Wang, G., 2018. Silicon Prediction Model of Blast Furnace Based on ARX and PCR, in: 2018 13th World Congress on Intelligent Control and Automation (WCICA). IEEE, Changsha, China, pp. 1214-1220. https://doi.org/10.1109/WCICA.2018.8630337
- Wang, L., Zeng, J., Liang, X., He, Y., Luo, S., Cai, J., 2019. Soft Sensing of a Nonlinear Multimode Process Using a Self Organizing Model and Conditional Probability Density Analysis. Ind. Eng. Chem. Res. 58, 14267-14274. https://doi.org/10.1021/acs.iecr.9b02651 https://doi.org/10.26434/chemrxiv-2024-51zj6 ORCID: https://orcid.org/0000-0001-9061-7810 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0
- Wang, W.H., Liu, J.Q., Liu, X.Y., 2015. Feature Selection and Long-term Modeling for the Blast Furnace Ironmaking Process Based on Random Forests. TOAUTOCJ 7, 966-973. https://doi.org/10.2174/1874444301507010966
- Wang, X., Hu, T., Tang, L., 2022. A Multiobjective Evolutionary Nonlinear Ensemble Learning With Evolutionary Feature Selection for Silicon Prediction in Blast Furnace. IEEE Trans. Neural Netw. Learning Syst. 33, 2080-2093. https://doi.org/10.1109/TNNLS.2021.3059784
- Wang, Y., Liu, X., 2011. Prediction of silicon content in hot metal based on SVM and mutual information for feature selection. Journal of Information & Computational Science 8, 4275- 4283.
- You, X., Yang, N., Wu, L., Diao, J., 2011. The Necessity of Hot Metal Desiliconization Process. Procedia Earth and Planetary Science 2, 116-121. https://doi.org/10.1016/j.proeps.2011.09.019
- Yu, X., Shen, Y., 2022. Transient State modeling of Industry-scale ironmaking blast furnaces. Chemical Engineering Science 248, 117185. https://doi.org/10.1016/j.ces.2021.117185
- Zeng, J., Liu, X., Gao, C., Luo, S., Jian, L., 2008. Wiener Model Identification of Blast Furnace Ironmaking Process. ISIJ Int. 48, 1734-1738. https://doi.org/10.2355/isijinternational.48.1734
- Zhao, X., Fang, Y., Liu, L., Xu, M., Zhang, P., 2020. Ameliorated moth-flame algorithm and its application for modeling of silicon content in liquid iron of blast furnace based fast learning network. Applied Soft Computing 94, 106418. https://doi.org/10.1016/j.asoc.2020.106418 https://doi.org/10.26434/chemrxiv-2024-51zj6 ORCID: https://orcid.org/0000-0001-9061-7810 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0