Predictive processing increases intelligibility of acoustically distorted speech: Behavioral and neural correlates (original) (raw)
Related papers
bioRxiv (Cold Spring Harbor Laboratory), 2023
Neural speech tracking has advanced our understanding of how our brains rapidly map an acoustic speech signal onto linguistic representations and ultimately meaning. It remains unclear, however, how speech intelligibility is related to the corresponding neural responses. Many studies addressing this question vary the level of intelligibility by manipulating the acoustic waveform, but this makes it difficult to cleanly disentangle effects of intelligibility from underlying acoustical confounds. Here, using magnetoencephalography (MEG) recordings, we study neural measures of speech intelligibility by manipulating intelligibility while keeping the acoustics strictly unchanged. Acoustically identical degraded speech stimuli (three-band noise vocoded, ~20 s duration) are presented twice, but the second presentation is preceded by the original (nondegraded) version of the speech. This intermediate priming, which generates a 'pop-out' percept, substantially improves the intelligibility of the second degraded speech passage. We investigate how intelligibility and acoustical structure affects acoustic and linguistic neural representations using multivariate Temporal Response Functions (mTRFs). As expected, behavioral results confirm that perceived speech clarity is improved by priming. TRF analysis reveals that auditory (speech envelope and envelope onset) neural representations are not affected by priming, but only by the acoustics of the stimuli (bottom-up driven). Critically, our findings suggest that segmentation of sounds into words emerges with better speech intelligibility, and most strongly at the later (~400 ms latency) word processing stage, in prefrontal cortex (PFC), in line with engagement of top-down mechanisms associated with priming. Taken together, our results show that word representations may provide some objective measures of speech comprehension. Significance Statement Electrophysiological studies have shown that brain tracks different speech features. How these neural tracking measures are modulated by speech intelligibility, however, remained elusive. Using noise-vocoded speech and a priming paradigm, we disentangled the neural effects of intelligibility from the underlying acoustical confounds. Neural intelligibility effects are analyzed at .
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.