In silico approach: Prediction of ADMET, molecular docking, and QSPR of secondary metabolites in Mangroves (original) (raw)
Abstract
Mangrove plants are known to produce various secondary metabolites (SMs) such as polyisoprenoids (dolichol and polyprenol), emodin, and luteolin to show anticancer, anti-inflammatory, antiviral, and antibacterial activities. This study aimed to predict the multiple activities of the SMs of mangroves based on several enzymes that utilize the in silico method. The properties of absorption, distribution, metabolism, excretion, and toxicity for emodin, luteolin, polyprenol C80, dolichol-17 (C85), and dolichol-20 (C100) displayed variation. Prediction for Lipinski's rule showed that emodin and luteolin have lower molecular weight than polyprenol C80, dolichol C85, and dolichol C100. Emodin and luteolin were further docked with cyclooxygenase-2, beta-lactamase, CYP450-dependent 14-alpha demethylase, 3C-like protease, and P-glycoprotein as protein targets using the Molegro Virtual Docker Ver.5.5 approach. In comparison to celecoxib, ketoconazole, clavulanic acid, remdesivir, and verapamil, emodin and luteolin had higher rerank scores. The quantitative structure-property relationships depicted that the electronic parameter, highest occupied molecular orbital (E HOMO ), was the physical chemistry parameter that influenced the total clearance. The present findings emphasized that emodin and luteolin from the SMs of mangroves have multiple activities as potent inhibitors of cancer cells and bacterial infections.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (31)
- Basyuni M, Sagami H, Baba S, Iwasaki H, Oku H. Diversity of polyisoprenoids in ten Okinawan Mangroves. Dendrobiology, 2016; 75:167-75; doi:10.12657/denbio.075.016
- Basyuni M, Sasmito SD, Analuddin K, Ulqodry TZ, Saragi-Sasmito MF, Eddy S, Milantara N. Mangrove Biodiversity, Conservation and Roles for Livelihoods in Indonesia. In: Das SC, Pullaiah T, Ashton EC. (eds) Mangroves: Biodiversity, Livelihoods and Conservation, 2022; 397-445. Springer Nature Singapore Pte Ltd, Singapore; doi:10.1007/978-981-19-0519-3_16 Cupp-Vickery JR, Garcia C,Hofacre A, McGee-Estrada K. Ketoconazole-induced conformational changes in the active site of cytochrome P450eryF. J Mol Biol, 2001: 311:101-10; doi:10.1006/ jmbi.2001.4803
- Dara S, Dhamercherla S, Jadav SS, Babu CM, Ahsan MJ. Machine learning in drug discovery: a review. Artif Intell Rev, 2021; doi:10.1007/s10462-021-10058-4.
- Duchowicz PR, Castro EA. QSPR studies on aqueous solubilities of drug-like compounds. Int J Mol Sci, 2009; 10:2558-77.
- Fadlan A, Warsito T. Pendekatan In silico dalam Menyingkap Potensi Antikanker Meciadanol. Jurnal Kimia Riset, 2021: 6(2):163-71.
- Guo Y, Liu Y, Zhang Z, Chen M, Zhang D, Tian C, Liu M, Jiang G. The antibacterial activity and mechanism of action of Luteolin against Trueperella pyogenes. Infect Drug Resist, 2020; 13:1697-711; doi:10.2147/ IDR.S253363
- Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res, 2007; 74(2):92-101.
- Illian DN, Basyuni M, Wati R, Hasibuan PAZ. Polyisoprenoids from Avicennia marina and Avicennia lanata inhibit WiDr cells proliferation. Pharmacogn Magazine, 2018; 14:513-8; doi:10.4103/pm.pm_201_18
- Illian DN, Hasibuan PAZ, Sumardi S, Nuryawan A,Wati R, Basyuni M. Anticancer activity of polyisoprenoids from Avicennia alba Blume. In WiDr Cells. Iranian J Pharm Res, 2019; 18:1477-87; doi:10.22037/ijpr.2019.1100719
- Illian DN, Siregar ES, Sumaiyah S, Utomo AR, Nuryawan A, Basyuni M. Potential compounds from several Indonesian plants to prevent SARS-CoV-2 infection: a mini-review of SARS-CoV-2 therapeutic targets. Heliyon, 2021;
- Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of Mpro from SARS- CoV-2 and dis-covery of its inhibitors. Nature, 2020; 582(7811):289-93, doi.org/10.1038/s41586-020-2223-y.
- Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol, 2004; 1:337-41.
- Lolli G, Cozza G, Mazzorana M, Tibaldi E, Cesaro L, Donella- Deana A, Meggio F, Venerando A, Franchin C, Sarno S, Battistutta R, Pinna LA. Inhibition of protein kinase CK2 by flavonoids and tyrphostins. a structural insight. Biochemistry, 2012; 51:6097-107; doi:10.1021/bi300531c Mandal A, Jha AK, Hazra B. Plant products as inhibitors of coronavirus 3CL protease. Front Pharmacol, 2021; 12; doi:10.3389/ fpar.2021.583387 May Zin WW, Buttachon S, Dethoup T, Pereira JA, Gales L, Inácio Â, Costa PM, Lee M, Sekeroglu N, Silva AMS, Pinto MMM, Kijjoa A. Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the Mangrove-derived endophytic fungus Eurotium Chevalieri KUFA 0006. Phytochemistry, 2017; 141:86-97; doi:10.1016/j. phytochem.2017.05.015
- Momtazi-Borojeni AA, Behbahani M, Sadeghi-aliabadi H. Antiproliferative activity and apoptosis induction of crude extract and fractions of Avicennia Marina. Iran J Basic Med Sci, 2013; 16.
- Odontuya G, Hoult JRS, Houghton PJ. Structure activity relationship for antiinflammatory effect of luteolin and its derived glycosides. Phytother Res, 2005; 19:782-6. OECD Organisation for Economic Co-Operation and Development (OECD). Guideline for testing of chemicals, OECD, Paris, France, 2001. Park SY, Jin ML, Ko MJ, Park G, Choi Y-W. Anti- neuroinflammatory effect of emodin in LPS-stimulated microglia: involvement of AMPK/Nrf2 activation. Neurochem Res, 2016; 41:2981- 92; doi:10.1007/s11064-016-2018-6
- Piramanayagam S, Lisina KV. An in silico study on anti inflammatory compounds from marine system using Molegro Virtual Docker. World J Pharm Sci, 2014; 2(4):283-93.
- Pires DEV, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph- based signatures. J Med Chem, 2015; 58(9):4066-72; doi: 10.1021/acs. jmedchem.5b00104
- Praditapuspa EN, Siswandono, Widiandani T. In silico analysis of pinostrobin derivatives from Boesenbergia pandurata on ErbB4 kinase target and QSPR linear models to predict drug clearance for searching anti-breast cancer drug candidates. Pharmacogn J, 2021; 13:1143-9; doi:10.5530/pj.2021.13.147
- Puspaningtyas AR. Docking Molekul dengan Metoda Molegro Virtual Docker dari Ekstrak Air Psidium Guajava, Linn dan Citrus Sinensis, Peels sebagai Inhibitor pada Tirosinase untuk Pemutih Kulit. Jurnal Kimia Terapan Indonesia, 2013; 15:31-9; doi:10.14203/jkti.v15i1.102
- Qurrohman T, Basyuni M, Hasibuan PAZ. Polyisoprenoids from Avicennia marina induces on P13k, Akt1, Mammalian target of rapamycin, Egfr, and P53 gene expression using reverse transcription-polymerase chain reaction. Open Access Maced J Med Sci, 2020; 8(A):146-52; doi:10.3889/ oamjms.2020.3328
- Sandfort F, Strieth-Kalthoff F, Kühnemund M, Beecks C, Glorius F. A structure-based platform for predicting chemical reactivity. Chem, 2020; 6:1379-90; doi:10.1016/j.chempr.2020.02.017
- Shoombuatong W, Prathipati P, Prachayasittikul V, Schaduangrat N, Malik AA, Pratiwi R, Wanwimolruk S, Wikberg JES, Gleeson MP, Spjuth O, Nantasenamat C. Towards predicting the cytochrome P450 Modulation: from QSAR to proteochemometric modeling. Curr Drug Metab, 2017; 18; doi:10.2174/1389200218666170320121932
- Song CM, Lim SJ, Tong JC. Recent advances in computer-aided drug design. Briefings Bioinform, 2009; 10:579-91.
- Sumardi, Basyuni M, Wati R. Antimicrobial activity of polyisoprenoids of sixteen Mangrove species from North Sumatra, Indonesia. Biodiversitas, 2018; 19:1243-8; doi:10.13057/biodiv/d190409
- Sychev DA, Ashraf GM, Svistunov AA, Maksimov ML, Tarasov VV, Chubarev VN, Otdelenov VA, Denisenko NP, Barreto GE, Aliev G. The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. Drug Design Dev Ther, 2018; 12:1147-56.
- Trehan I, Morandi F, Blaszczak LC, Shoichet BK. Using steric hindrance to design new inhibitors of class C β-lactamases. Chem Biol, 2002; 9(9):971-80.
- Walum E. Acute oral toxicity. Environ Health Perspect, 1998; 106:497-503; doi:10.1289/ehp.98106497
- Wang JL, Limburg D,Graneto MJ, Springer J, Hamper JRB, Liao S, Pawlitz JL, Kurumbail RG, Maziasz T, Talley JJ, et al. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: the second clinical candidate having a shorter and favorable human half-life. Bioorgan Med Chem Lett, 2010; 20:7159-63; doi:10.1016/j.bmcl.2010.07.054 Widiyana AP. Computation design of quinazoline-4(3H)-on derivatives as cyclooxygenase-2 (COX-2) inhibitor. Jurnal Farmasi Sains Dan Praktis, 2021;
- Widiyana AP, Putra GS, Muchlashi LA, Sulistyowaty MI, Budiati T. Design and molecular docking studies of quinazoline derivatives as antiproliferation. Jurnal Farmasi Dan Ilmu Kefarmasian Indonesia, 2016; 3(2):44-8.
- Wu J, Xiao Q, Xu J, Li MY, Pan JY, Yang MH. Natural products from True Mangrove Flora: source, chemistry and bioactivities. Nat Prod Rep, 2008; 25:955-81.
- Zhang R, Dong K, Wang Z, Miao R, Lu W, Wu X. Nanoparticulate drug delivery strategies to address intestinal cytochrome P450 Cyp3a4 metabolism towards personalized medicine. Pharmaceutics, 2021; 13.