Characterization of a water-in-oil-in-water multiple emulsion integrating biomimetic aqueous-core lipid nanoballoons housing protein entities (original) (raw)
Related papers
Biosensors
During the last decennium, it has become widely accepted that ubiquitous bacterial viruses, or bacteriophages, exert enormous influences on our planet’s biosphere, killing between 4–50% of the daily produced bacteria and constituting the largest genetic diversity pool on our planet. Currently, bacterial infections linked to healthcare services are widespread, which, when associated with the increasing surge of antibiotic-resistant microorganisms, play a major role in patient morbidity and mortality. In this scenario, Pseudomonas aeruginosa alone is responsible for ca. 13–15% of all hospital-acquired infections. The pathogen P. aeruginosa is an opportunistic one, being endowed with metabolic versatility and high (both intrinsic and acquired) resistance to antibiotics. Bacteriophages (or phages) have been recognized as a tool with high potential for the detection of bacterial infections since these metabolically inert entities specifically attach to, and lyse, bacterial host cells, th...
Nanotechnology Reviews
The lipid-based colloidal carriers, such as nanostructured lipid carriers (NLCs), solid lipid nanoparticles (SLNs), nanocapsules, liposomes, and microemulsion, are the latest and significant entrants in the development of drug delivery systems owing to their myriad advantages. The NLCs are second-generation SLNs having unstructured matrix, have high drug loading, and provide long-term drug stability in comparison to SLNs and other colloidal systems, which show lower drug loading and experience burst release/drug expulsion during storage. This review is aimed to summarize the formulation development and optimization strategies for NLCs as reported in the literature collected from authentic databases. Various types of NLCs, formulation components, methods of preparation, characterization parameters, optimization (statistical designs) strategies, toxicity, regulatory aspects, and their applications in oral, parenteral, ocular, pulmonary, nose-to-brain, tumor targeting, and transdermal ...
Cosmetics
Limited permeability through the stratum corneum (SC) is a major obstacle for numerous skin care products. One promising approach is to use lipid nanoparticles as they not only facilitate penetration across skin but also avoid the drawbacks of conventional skin formulations. This review focuses on solid lipid nanoparticles (SLNs), nanostructured lipid nanocarriers (NLCs), and nanoemulsions (NEs) developed for topical and transdermal delivery of active compounds. A special emphasis in this review is placed on composition, preparation, modifications, structure and characterization, mechanism of penetration, and recent application of these nanoparticles. The presented data demonstrate the potential of these nanoparticles for dermal and transdermal delivery.