Influence of nanosilicon on drought tolerance in plants: An overview (original) (raw)
Related papers
Nanosilicon: An approach for abiotic stress mitigation and sustainable agriculture
Frontiers in Plant Science
Abiotic stresses cause extensive yield loss in various crops globally. Over the past few decades, the application of silicon nanoparticles (nSi) has emerged as an abiotic stress mitigator. The initial responses of plants are exemplified by the biogenesis of reactive oxygen species (ROS) to sustain cellular/organellar integrity, ensuring in vivo operation of metabolic functions by regulating physiological and biochemical pathways during stress conditions. Plants have evolved various antioxidative systems to balance/maintain the process of homeostasis via enzymatic and non-enzymatic activities that repair any losses. In an adverse environment, supplementation of Si mitigates the stress condition and improves the growth and development of plants. Its ameliorative effects are correlated with enhanced antioxidant enzymes activities, maintaining the equilibrium between ROS generation and reduction. However, a limited number of studies cover the role of nSi in abiotic stress conditions. Th...
Nanomaterials as an alternative to increase plant resistance to abiotic stresses
Frontiers in Plant Science
The efficient use of natural resources without negative repercussions to the environment has encouraged the incursion of nanotechnology to provide viable alternatives in diverse areas, including crop management. Agriculture faces challenges due to the combination of different abiotic stresses where nanotechnology can contribute with promising applications. In this context, several studies report that the application of nanoparticles and nanomaterials positively affects crop productivity through different strategies such as green synthesis of nanoparticles, plant targeted protection through the application of nanoherbicides and nanofungicides, precise and constant supply of nutrients through nanofertilizers, and tolerance to abiotic stress (e.g., low or high temperatures, drought, salinity, low or high light intensities, UV-B, metals in soil) by several mechanisms such as activation of the antioxidant enzyme system that alleviates oxidative stress. Thus, the present review focuses on...
Frontiers in Plant Science, 2022
Drought stress (DS) is a serious challenge for sustaining global crop production and food security. Nanoparticles (NPs) have emerged as an excellent tool to enhance crop production under current rapid climate change and increasing drought intensity. DS negatively affects plant growth, physiological and metabolic processes, and disturbs cellular membranes, nutrient and water uptake, photosynthetic apparatus, and antioxidant activities. The application of NPs protects the membranes, maintains water relationship, and enhances nutrient and water uptake, leading to an appreciable increase in plant growth under DS. NPs protect the photosynthetic apparatus and improve photosynthetic efficiency, accumulation of osmolytes, hormones, and phenolics, antioxidant activities, and gene expression, thus providing better resistance to plants against DS. In this review, we discuss the role of different metal-based NPs to mitigate DS in plants. We also highlighted various research gaps that should be filled in future research studies. This detailed review will be an excellent source of information for future researchers to adopt nanotechnology as an eco-friendly technique to improve drought tolerance.
Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review
Frontiers in Plant Science
Plants are subjected to a wide range of abiotic stresses, such as heat, cold, drought, salinity, flooding, and heavy metals. Generally, abiotic stresses have adverse impacts on plant growth and development which affects agricultural productivity, causing food security problems, and resulting in economic losses. To reduce the negative effects of environmental stress on crop plants, novel technologies, such as nanotechnology, have emerged. Implementing nanotechnology in modern agriculture can also help improve the efficiency of water usage, prevent plant diseases, ensure food security, reduce environmental pollution, and enhance sustainability. In this regard, nanoparticles (NPs) can help combat nutrient deficiencies, promote stress tolerance, and improve the yield and quality of crops. This can be achieved by stimulating the activity of certain enzymes, increasing the contents (e.g., chlorophyll) and efficiency of photosynthesis, and controlling plant pathogens. The use of nanoscale ...
Nanotechnology a Potential Tool to Mitigate Abiotic Stress in Crop Plants
Abiotic and Biotic Stress in Plants, 2019
The response of plants to abiotic stress is complex and involves changes in their morphology, physiology and metabolism. A number of strategies are being followed to enhance the tolerance of abiotic stress conditions, including the development of genetically-engineered varieties containing various gene constructs believed to enhance the performance under stress conditions. Nanotechnology is a versatile field and has found application in almost all the existing fields of science. The application of nanoparticles increased germination and seedling growth, physiological activities including photosynthesis and nitrogen metabolism, leaf activities of CAT, POX and APX, chlorophyll contents, protein, carbohydrate contents and yield, and also positive changes in gene expression indicating their potential use in crop improvement. Nanoparticles enhances the water stress tolerance via enhancing root hydraulic conductance and water uptake in plants and showing differential abundance of proteins involved in oxidation-reduction, ROS detoxification, stress signaling, and hormonal pathways. The mobility of the nanoparticles is very high, which leads to rapid transport of the nutrient to all parts of the plant. In particular, the most actual is to find ways to increase the adaptation potential of cultivated plants with the use of nanopreparations in stressful conditions.
Response of Nanosilica on Physiological and Leaf Surface Anotomical Characters in Rice under Drought
2024
The experimentation was carried out during the summer (2021-2022) at the Rice Department, Tamil Nadu Agricultural University, Coimbatore to assess the effects of nanosilica on drought imposed rice plants and to assess the impact of different concentrations of nanosilica (SiO2) on growth, anatomical, physio-biochemical parameters and yield characters of rice under drought conditions. In this experiment, different concentrations of the nanosilica formulation at 200, 400, 600, 800, and 1000 ppm were applied as foliar sprays under drought conditions. Spraying of 400 ppm of nanosilica formulation under drought stress in this eld experiment has resulted of increases in leaf area and speci c leaf weight of 14.3 and 15.3%, respectively. Application of 400 ppm nanosilica increases up to 12.5% in terms of membrane stability index (MSI), meanwhile in chlorophyll stability index (CSI) was increased up to 20.4%. Proline content was decreased up to 26.9% by application of nanosilica (400 ppm) in drought imposed treated plants. Trichome length and the length of the silica bodies were signi cantly increase of about 17.4 and 9.1% over the control. Application 400 ppm of nanosilica had maximum of 68.9 and 29.4% increment in terms of trichome and silicon bodies length over the drought. Stomatal structures are reduced signi cantly with mean reduction of 43.5% than the control in both the rice varieties. Under the drought, the average increase in stomatal size was 65.5% when 400 ppm nanosilica was applied. When exposed to 400 ppm of nanosilica treatments, CO54 showed more responses than the other variety in terms of leaf area, speci c leaf weight, MSI, CSI, proline and leaf surface characteristics during drought.
Plants
In recent years, the global agricultural system has been unfavorably impacted by adverse environmental changes. These changes in the climate, in turn, have altered the abiotic conditions of plants, affecting plant growth, physiology and production. Abiotic stress in plants is one of the main obstacles to global agricultural production and food security. Therefore, there is a need for the development of novel approaches to overcome these problems and achieve sustainability. Nanotechnology has emerged as one such novel approach to improve crop production, through the utilization of nanoscale products, such as nanofertilizer, nanofungicides, nanoherbicides and nanopesticides. Their ability to cross cellular barriers makes nanoparticles suitable for their application in agriculture. Since they are easily soluble, smaller, and effective for uptake by plants, nanoparticles are widely used as a modern agricultural tool. The implementation of nanoparticles has been found to be effective in ...
Improvement of Abiotic Stress Tolerance in Plants with the Application of Nanoparticles
Abiotic Stress in Plants - Adaptations to Climate Change [Working Title]
Plants are under the threat of climatic changes and there is a reduction in productivity and deterioration in quality. The application of nanoparticles is one of the recent approaches to improve plant yield and quality traits. A number of nanoparticles, such as zinc nanoparticles (ZnO NPs), iron nanoparticles (Fe2O3 NPs), silicon nanoparticles (SiO2 NPs), cerium nanoparticles (CeO2 NPs), silver nanoparticles (Ag NPs), titanium dioxide nanoparticles (TiO2 NPs), and carbon nanoparticles (C NPs), have been reported in different plant species to play a role to improve the plant physiology and metabolic pathways under environmental stresses. Crop plants readily absorb the nanoparticles through the cellular machinery of different tissues and organs to take part in metabolic and growth processes. Nanoparticles promote the activity of a range of antioxidant enzymes, including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), in plant species, which in turn improve the growth...
Nanoparticles: The Plant Saviour under Abiotic Stresses
Nanomaterials
Climate change significantly affects plant growth and productivity by causing different biotic and abiotic stresses to plants. Among the different abiotic stresses, at the top of the list are salinity, drought, temperature extremes, heavy metals and nutrient imbalances, which contribute to large yield losses of crops in various parts of the world, thereby leading to food insecurity issues. In the quest to improve plants’ abiotic stress tolerance, many promising techniques are being investigated. These include the use of nanoparticles, which have been shown to have a positive effect on plant performance under stress conditions. Nanoparticles can be used to deliver nutrients to plants, overcome plant diseases and pathogens, and sense and monitor trace elements that are present in soil by absorbing their signals. A better understanding of the mechanisms of nanoparticles that assist plants to cope with abiotic stresses will help towards the development of more long-term strategies again...
Spanish Journal of Agricultural Research, 2020
Drought is the most serious environmental challenge that limits plant growth and causes more severe yield losses than other abiotic stress factors resulting in a serious food shortage. Nanomaterials (NMs) are considered as vital tools to overcome contemporary and future challenges in agricultural production. Recently, NMs have been applied for enhancing seed germination, growth, physiology, productivity and quality attributes of various crops under normal or stress conditions. Up to date, there is no comprehensive review about the potential role of NMs in attenuating the drought-induced adverse effects in crop plants. Thus, this review will highlight this issue. Generally, NMs minimize drought-induced osmotic stress by accumulation of osmolytes that result in osmotic adjustment and improved plant water status. In addition, NMs play a key role to improve root growth, conductive tissue elements and aquaporin proteins facilitating uptake and translocation of water and nutrients. Furthermore, NMs reduce water loss by stomatal closure due to abscisic acid signaling. However, this leads to reduced photosynthesis and oxidative stress damage. At the same time, NMs increase the content of light-harvesting pigments, enzymatic and non-enzymatic antioxidants leading to enhancing photosynthesis with reducing oxidative stress damage. Overall, NMs can ameliorate the deleterious effects of drought stress in crop plants by regulation of gene expression and alternation of various physiological and biochemical processes.