Model studies on the mechanical significance of grouping in compound spider slit sensilla (Chelicerata, Araneida) (original) (raw)

Finite element modeling of arachnid slit sensilla—I. The mechanical significance of different slit arrays

Journal of Comparative Physiology A, 2007

Arachnid strain sensitive slit sensilla are elongated openings in the cuticle with aspect ratios (slit length l / slit width b) of up to 100. Planar Finite Element (FE) models are used to calculate the relative slit face displacements, D c , at the centers of single slits and of arrangements of mechanically interacting slits under uni-axial compressive far-field loads. Our main objective is to quantitatively study the role of the following geometrical parameters in stimulus transformation: aspect ratio, slit shape, geometry of the slits' centerlines, load direction, lateral distance S, longitudinal shift k, and difference in slit length Dl between neighboring slits. Slit face displacements are primarily sensitive to slit length and load direction but little affected by aspect ratios between 20 and 100. In stacks of five parallel slits at lateral distances typical of lyriform organs (S = 0.03 l) the longitudinal shift k substantially influences slit compression. A change of k from 0 to 0.85 l causes changes of up to 420% in D c . Even minor morphological variations in the arrangements can substantially influence the stimulus transformation. The site of transduction in real slit sensilla does not always coincide with the position of maximum slit compression predicted by simplified models.

Finite element modeling of arachnid slit sensilla: II. Actual lyriform organs and the face deformations of the individual slits

Journal of Comparative Physiology A, 2009

Arachnid slit sensilla respond to minute strains in the exoskeleton. After having applied Finite Element (FE) analysis to simpliWed arrays of Wve straight slits (Hößl et al. J Comp Physiol A 193:445-459, 2007) we now present a computational study of the eVects of more subtle natural variations in geometry, number and arrangement of slits on the slit face deformations. Our simulations show that even minor variations in these parameters can substantially inXuence a slit's directional response. Using white-light interferometric measurements of the surface deformations of a lyriform organ, it is shown that planar FE models are capable of predicting the principal characteristics of the mechanical responses. The magnitudes of the measured and calculated slit face deformations are in good agreement. At threshold, they measure between 1.7 and 43 nm. In a lyriform organ and a closely positioned loose group of slits, the detectable range of loads increases to approximately 3.5 times the range of the lyriform organ alone. Stress concentration factors (up to ca. 29) found in the vicinity of the slits were evaluated from the models. They are mitigated due to local thickening of the exocuticle and the arrangement of the chitinous microWbers that prevents the formation of cracks under physiological loading conditions.

From stress and strain to spikes: mechanotransduction in spider slit sensilla

Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 2002

This review focuses on the structure and function of a single mechanoreceptor organ in the cuticle of spiders. Knowledge emerging from the study of this organ promises to yield general principles that can be applied to mechanosensation in a wide range of animal systems. The lyriform slit sense organ on the anterolateral leg patella of the spider Cupiennius salei is unusual in possessing large sensory neurons, whose cell bodies are close to the sites of sensory transduction, and accessible to intracellular recording during mechanotransduction. This situation, combined with recent technical developments, has made it possible to observe and experiment with all the major stages of mechanosensation. Important findings include the approximate size, number and ionic selectivity of the ion channels responsible for mechanotransduction, the types of voltage-activated ion channels responsible for action potential encoding, and the mechanisms controlling the dynamic properties of transduction and encoding. Most recently, a complex efferent system for peripheral modulation of mechanosensation has been discovered and partially characterized. Much remains to be learned about mechanosensation, but the lyriform slit sense organ system continues to offer important opportunities to advance our understanding of this crucial sense.

The mechanical characterization of the legs, fangs, and prosoma in the spider Harpactira curvipes (Pocock 1897)

Scientific Reports

The exoskeleton of spiders is the primary structure that interacts with the external mechanical stimuli, thus playing a crucial role in spider life. In particular, fangs, legs, and prosoma are the main rigid structures of the exoskeleton and their properties must be measured to better understand their mechanical behaviours. Here we investigate, by means of nanoindentation, the mechanical properties of the external sclerotized cuticles of such parts in the spider Harpactira curvipes. Interestingly, the results show that the leg’s cuticle is stiffer than the prosoma and has a stiffness similar to the one of the tip fangs. This could be explained by the legs’ function in perceiving vibrations that could be facilitated by higher stiffness. From a broader perspective, this characterization could help to understand how the same basic material (the cuticle, i.e. mainly composed of chitin) can be tuned to achieve different mechanical functions, which improves the animal’s adaptation to spec...

Ultrastructure of chemosensory tarsal tip‐pore sensilla of Argiope spp. Audouin, 1826 (Chelicerata: Araneae: Araneidae)

Journal of Morphology

While chemical communication has been investigated intensively in vertebrates and insects, relatively little is known about the sensory world of spiders despite the fact that chemical cues play a key role in natural and sexual selection in this group. In insects, olfaction is performed with wall-pore and gustation with tip-pore sensilla. Since spiders possess tip-pore sensilla only, it is unclear how they accomplish olfaction. We scrutinized the ultrastructure of the trichoid tip-pore sensilla of the orb weaving spider Argiope bruennichi-a common Palearctic species the males of which are known to be attracted by female sex pheromone. We also investigated the congener Argiope blanda. We examined whether the tip-pore sensilla differ in ultrastructure depending on sex and their position on the tarsi of walking legs of which only the distal parts are in contact with the substrate. We hypothesized as yet undetected differences in ultrastructure that suggest gustatory versus olfactory functions. All tarsal tip-pore sensilla of both species exhibit characters typical of contact-chemoreceptors, such as (a) the presence of a pore at the tip of the sensillum shaft, (b) 2-22 uniciliated chemoreceptive cells with elongated and unbranched dendrites reaching up to the tip-pore, (c) two integrated mechanoreceptive cells with short dendrites and large tubular bodies attached to the sensillum shaft's base, and (d) a socket structure with suspension fibres that render the sensillum shaft flexible. The newly found third mechanoreceptive cell attached to the proximal end of the peridendritic shaft cylinder by a small tubular body was likely overlooked in previous studies. The organization of tarsal tip-pore sensilla did not differ depending on the position on the tarsus nor between the sexes. As no wall-pore sensilla were detected, we discuss the probability that a single type of sensillum performs both gustation and olfaction in spiders.

Small details in a large spider: cheliceral and spinneret behavior when Trichonephila clavipes (Araneae: Araneidae) cuts lines and wraps prey

The Journal of Arachnology, 2021

The large size and slow movements of mature female Trichonephila clavipes (Linnaeus, 1767) permit observations of some seldom-studied details of behavioral processes, such as cutting and initiating silk lines, that help clarify functional morphology. Silk lines were cut after being grasped by the cheliceral fangs; but direct observation and details of cheliceral morphology showed that cutting was not accomplished mechanically, as has sometimes been assumed. Lines were probably cut by contact with an enzyme in the mouth region. Initiation of wrapping lines involved rapid, coordinated movements of the spinnerets and the abdomen that caused the spigots for these lines to brush against each other and dragline silk. The posterior lateral spinnerets were spread widely during wrapping; this behavior and the positions of spigots on the spinnerets probably serve to widen the swath of wrapping lines applied to the prey.