Charge-Governed Solvation Behaviour of Novel AMPs (original) (raw)

The effect of the placement and total charge of the basic amino acid clusters on antibacterial organism selectivity and potency

Bioorganic & Medicinal Chemistry, 2011

Extensive circular dichroism, isothermal titration calorimetry and induced calcein leakage studies were conducted on a series of antimicrobial peptides (AMPs), with a varying number of Lys residues located at either the C-terminus or the N-terminus to gain insight into their effect on the mechanisms of binding with zwitterionic and anionic membrane model systems. Different CD spectra were observed for these AMPs in the presence of zwitterionic DPC and anionic SDS micelles indicating that they adopt different conformations on binding to the surfaces of zwitterionic and anionic membrane models. Different CD spectra were observed for these AMPs in the presence of zwitterionic POPC and anionic mixed 4:1 POPC/POPG LUVs and SUVs, indicating that they adopt very different conformations on interaction with these two types of LUVs and SUVs. In addition, ITC and calcein leakage data indicated that all the AMPs studied interact via very different mechanisms with anionic and zwitterionic LUVs. ITC data suggest these peptides interact primarily with the surface of zwitterionic LUVs while they insert into and form pores in anionic LUVs. CD studies indicated that these compounds adopt different conformations depending on the ratio of POPC to POPG lipids present in the liposome. There are detectable spectroscopic and thermodynamic differences between how each of these AMPs interacts with membranes, that is position and total charge density defines how these AMPs interact with specific membrane models and thus partially explain the resulting diversity of antibacterial activity of these compounds.

Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane

Pharmaceuticals

Antimicrobial peptides (AMPs) are anti-infectives that have the potential to be used as a novel and untapped class of biotherapeutics. Modes of action of antimicrobial peptides include interaction with the cell envelope (cell wall, outer- and inner-membrane). A comprehensive understanding of the peculiarities of interaction of antimicrobial peptides with the cell envelope is necessary to perform a rational design of new biotherapeutics, against which working out resistance is hard for microbes. In order to enable de novo design with low cost and high throughput, in silico predictive models have to be invoked. To develop an efficient predictive model, a comprehensive understanding of the sequence-to-function relationship is required. This knowledge will allow us to encode amino acid sequences expressively and to adequately choose the accurate AMP classifier. A shared protective layer of microbial cells is the inner, plasmatic membrane. The interaction of AMP with a biological membran...

Antimicrobial Peptides as an Opportunity Against Bacterial Diseases

Current Medicinal Chemistry, 2015

Antimicrobial peptides (AMPs) are an heterogeneous group of small amino acidic molecules produced by the innate immune system of a variety of organisms encompassing all orders of life from eukaryotes to amphibians, insects and plants. Numerous AMPs have been isolated from natural sources and many others have been de novo designed and synthetically produced. AMPs have antimicrobial activity in the micromolar range and compared with traditional antibiotics, they kill bacteria very rapidly. They act, principally, by the electrostatic attraction to negatively charged bacterial cells and consequently membrane disruption, but their antibacterial activity may also involve interference with metabolic processes or different cytoplasmic targets. AMPs are a group of unique and incredible compounds that may be directed to a therapeutic use either alone or in combination with existing antibiotics.

Self-assembled Cationic Amphiphiles as Antimicrobial Peptides Mimics: Role of Hydrophobicity, Linkage Type, and Assembly State

Inspired by high promise using naturally occurring antimicrobial peptides (AMPs) to treat infections caused by antimicrobial-resistant bacteria, cationic amphiphiles (CAms) were strategically designed as synthetic mimics to overcome associated limitations, including high manufacture cost and low metabolic stability. CAms with facially amphiphilic conformation were expected to demonstrate membrane-lytic properties and thus reduce tendency of resistance development. By systematically tuning the hydrophobicity, CAms with optimized compositions exhibited potent broad-spectrum antimicrobial activity (with minimum inhibitory concentrations in low μg/mL range) as well as negligible hemolytic activity. Electron microscope images revealed the morphological and ultrastructure changes of bacterial membranes induced by CAm treatment and validated their membrane-disrupting mechanism. Additionally, an all-atom molecular dynamics simulation was employed to understand the CAm-membrane interaction on molecular level. This study shows that these CAms can serve as viable scaffolds for designing next generation of AMP mimics as antimicrobial alternatives to combat drug-resistant pathogens.

Transmembrane and Antimicrobial Peptides. Hydrophobicity, Amphiphilicity and Propensity to Aggregation

Development of the new antimicrobial agents against antibiotic resistance pathogens is the nowadays challenge. Antimicrobial peptides (AMP) occur as important defence agents in many organisms and offer a viable alternative to conventional antibiotics. Therefore they have become increasingly recognized in current research as templates for prospective antibiotic agents. The efficient designing of the new antimicrobials on the basis of antimicrobial peptides requires comprehensive knowledge on those general physical-chemical characteristics which allow to differ antimicrobial peptides from non-active against microbs ones. According to supposed mechanisms of action, AMP interact with and physically disrupt the bacterial membranes. Consequently, hydrophobicity, amphiphilicity and intrinsic aggregation propensities are considered as such major characteristics of the peptide, which determine the results of peptide-membrane interactions. For some kind of peptides such characteristics as hyd...

Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds

Antimicrobial peptides (AMPs) are compounds, which have inhibitory activity against microorganisms. In the last decades, AMPs have become powerful alternative agents that have met the need for novel anti‐infectives to overcome increasing antibiotic resistance problems. Moreover, recent epidemics and pandemics are increasing the popularity of AMPs, due to the urgent necessity for effective antimicrobial agents in combating the new emergence of microbial diseases. AMPs inhibit a wide range of microorganisms through diverse and special mechanisms by targeting mainly cell membranes or specific intracellular components. In addition to extraction from natural sources, AMPs are produced in various hosts using recombinant methods. More recently, the synthetic analogues of AMPs, designed with some modifications, are predicted to overcome the limitations of stability, toxicity and activity associated with natural AMPs. AMPs have potential applications as antimicrobial agents in food, agriculture, environment, animal husbandry and pharmaceutical industries. In this review, we have provided an overview of the structure, classification and mechanism of action of AMPs, as well as discussed opportunities for their current and potential applications.