Protection induced by virus-like particle vaccine containing tandem repeat gene of respiratory syncytial virus G protein (original) (raw)

Viruslike Particle Vaccine Induces Protection Against Respiratory Syncytial Virus Infection in Mice

The Journal of Infectious Diseases, 2011

Background. Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral death in infants. Despite decades of research with traditional or subunit vaccine approaches, there are no approved RSV vaccines. New approaches are therefore urgently needed to develop effective RSV vaccines. Methods. We developed viruslike particles (VLPs) consisting of an influenza virus matrix (M1) protein core and RSV-F or-G on the surface. We tested the immunogenicity and vaccine efficacy of these VLPs (RSV-F, RSV-G) in a mouse model. Results. Intramuscular vaccination with RSV-F or RSV-G VLPs elicited IgG2a dominant RSV-specific immunoglobulin G (IgG) antibody responses against RSV-A2 viruses in both serum and lung extract. Mice immunized with VLPs (RSV-F or RSV-G) showed higher viral neutralizing antibodies in vitro and significantly decreased lung virus loads in vivo after live RSV-A2 challenge. RSV-G VLPs showed better protective efficacy than RSV-F VLPs as determined by the levels of lung virus loads and morbidity postchallenge. Conclusions. This study demonstrates that VLP vaccination provides effective protection against RSV infection. VLPs containing RSV-F and/or RSV-G are potential vaccine candidates against RSV. Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants and children worldwide. In the United States, roughly 70 000-120 000 infants are hospitalized annually with RSV related pneumonia or bronchiolitis [1-3]. Effective therapies are not widely available, and there is no licensed vaccine. Approaches to develop subunit vaccines, attenuated viruses, DNA or live vector vaccines have been used but have not resulted in a licensed vaccine.

Virus-like Particle Vaccine Expressing the Respiratory Syncytial Virus Pre-Fusion and G Proteins Confers Protection against RSV Challenge Infection

Pharmaceutics

Respiratory syncytial virus (RSV) causes severe lower respiratory tract disease in children and the elderly. However, there are no effective antiviral drugs or licensed vaccines available for RSV infection. Here, RSV virus-like particle (VLP) vaccines expressing Pre-F, G, or Pre-F and G proteins on the surface of influenza virus matrix protein 1 (M1) were produced using the baculovirus expression system, and their protective efficacy was evaluated in mice. The morphology and successful assembly of VLPs were confirmed by transmission electron microscope (TEM) and Western blot. High levels of serum IgG antibody response were detected in VLP-immunized mice, and significantly higher levels of IgG2a and IgG2b were found in the Pre-F+G VLP immunization group compared to the unimmunized control. Serum-neutralizing activity was higher in the VLP immunization groups compared to the naïve group, with Pre-F+G VLPs demonstrating superior neutralizing activity to the single antigen-expressing VL...

The Respiratory Syncytial Virus G Protein Enhances the Immune Responses to the RSV F Protein in an Enveloped Virus-like Particle Vaccine Candidate

Respiratory syncytial virus (RSV) is a serious human respiratory pathogen, but no RSV vaccine has been licensed. Many of the vaccine candidates are focused on the viral F protein. However, it is the G protein that binds the likely receptor, CX3CR1, in human alveolar lung cells raising the question of the importance of the G protein in vaccine candidates. Using virus-like particle (VLP) vaccine candidates, we have directly compared VLPs containing only the pre-fusion F protein, only the G protein, or both glycoproteins. We report that VLPs containing both glycoproteins bind to anti-F protein specific monoclonal antibodies differently than VLPs containing only the pre-fusion F protein. Using RSV naïve cotton rats as an animal model, we have found that VLPs assembled only with the pre-F protein stimulated extremely weak neutralizing antibody (NAb) titers as did VLPs assembled with G protein. However, VLPs assembled with both glycoproteins stimulated quite robust neutralizing antibody t...

Co-immunization with virus-like particle and DNA vaccines induces protection against respiratory syncytial virus infection and bronchiolitis

Antiviral research, 2014

This study demonstrates that immunization with non-replicating virus-like particle (FFG VLP) containing RSV F and G glycoproteins together with RSV F DNA induced T helper type 1 antibody responses to RSV F similar to live RSV infection. Upon RSV challenge 21weeks after immunization, FFG VLP vaccination induced protection against RSV infection as shown by clearance of lung viral loads, and the absence of eosinophil infiltrates, and did not cause lung pathology. In contrast, formalin-inactivated RSV (FI-RSV) vaccination showed significant pulmonary eosinophilia, severe mucus production, and extensive histopathology resulting in a hallmark of pulmonary pathology. Substantial lung pathology was also observed in mice with RSV re-infections. High levels of systemic and local inflammatory cytokine-secreting cells were induced in mice with FI-RSV but not with FFG VLP immunization after RSV challenge. Therefore, the results provide evidence that recombinant RSV FFG VLP vaccine can confer lon...

Protection against respiratory syncytial virus (RSV) elicited in mice by plasmid DNA immunisation encoding a secreted RSV G protein-derived antigen

FEMS Immunology & Medical Microbiology, 2000

Plasmid vectors encoding two different variants, one cytoplasmic and one secreted version, of a candidate vaccine BBG2Na to respiratory syncytial virus (RSV), were constructed and evaluated in a nucleic acid vaccination study. The two different vectors, which employed the Semliki Forest virus gene amplification system, were found to express BBG2Na appropriately in in vitro cell cultures. Immunisation of mice with the plasmid vectors elicited significant serum anti-BBG2Na IgG responses only in the mice receiving the plasmid encoding the secreted version of BBG2Na. Consistent with antibody induction data, sterilising lung protection against RSV-A challenge was also only observed in this group. These results indicate that the targeting of antigen expression (intracellular versus secreted) would be an important factor to consider in the design of nucleic acid vaccines.

Baculovirus-expressed virus-like particle vaccine in combination with DNA encoding the fusion protein confers protection against respiratory syncytial virus

Vaccine, 2014

Respiratory syncytial virus (RSV) is a major viral agent causing significant morbidity and mortality in young infants and the elderly. There is no licensed vaccine against RSV and it is a high priority to develop a safe RSV vaccine. We determined the immunogenicity and protective efficacy of combined virus-like particle and DNA vaccines presenting RSV glycoproteins (Fd.VLP) in comparison with formalin inactivated RSV (FI-RSV). Immunization of mice with Fd.VLP induced higher ratios of IgG2a/IgG1 antibody responses compared to those with FI-RSV. Upon live RSV challenge, Fd.VLP and FI-RSV vaccines were similarly effective in clearing lung viral loads. However, FI-RSV immunized mice showed a substantial weight loss and high levels of T helper type 2 (Th2) cytokines as well as extensive lung histopathology and eosinophil infiltration. In contrast, Fd.VLP immunized mice did not exhibit Th2 type cytokines locally and systemically, which might contribute to preventing vaccine-associated RSV...

Respiratory Syncytial Virus: Current Progress in Vaccine Development

Viruses, 2013

Respiratory syncytial virus (RSV) is the etiological agent for a serious lower respiratory tract disease responsible for close to 200,000 annual deaths worldwide. The first infection is generally most severe, while re-infections usually associate with a milder disease. This observation and the finding that re-infection risks are inversely associated with neutralizing antibody titers suggest that immune responses generated toward a first RSV exposure can significantly reduce morbidity and mortality throughout life. For more than half a century, researchers have endeavored to design a vaccine for RSV that can mimic or improve upon natural protective immunity without adverse events. The virus is herein described together with the hurdles that must be overcome to develop a vaccine and some current vaccine development approaches.

Genetic Vaccine for Respiratory Syncytial Virus Provides Protection Without Disease Potentiation

Molecular Therapy, 2014

Respiratory syncytial virus (RSV) is a major cause of infectious lower respiratory disease in infants and the elderly. As there is no vaccine for RSV, we developed a genetic vaccine approach that induced protection of the entire respiratory tract from a single parenteral administration. The approach was based on adenovirus vectors derived from newly isolated nonhuman primate viruses with low seroprevalence. We show for the first time that a single intramuscular (IM) injection of the replication-deficient adenovirus vectors expressing the RSV fusion (F0) glycoprotein induced immune responses that protected both the lungs and noses of cotton rats and mice even at low doses and for several months postimmunization. The immune response included high titers of neutralizing antibody that were maintained ≥24 weeks and RSV-specific CD8 + and CD4 + T cells. The vectors were as potently immunogenic as a human adenovirus 5 vector in these two key respiratory pathogen animal models. Importantly, there was minimal alveolitis and granulocytic infiltrates in the lung, and type 2 cytokines were not produced after RSV challenge even under conditions of partial protection. Overall, this genetic vaccine is highly effective without potentiating immunopathology, and the results support development of the vaccine candidate for human testing.

The immunogenicity, protective efficacy and safety of BBG2Na, a subunit respiratory syncytial virus (RSV) vaccine candidate, against RSV-B

Vaccine, 2003

Respiratory syncytial virus (RSV) is divided into subgroups A and B, based primarily on variation within the G glycoprotein. A safe vaccine that protects against both would be the ideal. BBG2Na is a recombinant subunit RSV vaccine candidate derived in part from the G protein of RSV-A. Interestingly, BBG2Na formulated in alum protected against RSV-B challenge at early time points following vaccination in mice. Over 6 months, however, BBG2Na-induced immunogenicity and protective efficacy progressively diminished, such that few animals were considered protected at the end. To study the safety of BBG2Na relative to RSV-B challenge, we established a novel enhanced immunopathology mouse model. We confirmed that RSV-B challenge of formalin-inactivated RSV-A (FI-RSV-A)-immunized BALB/c mice results in enhanced pulmonary pathology. Therefore, this phenomenon is neither subgroup-specific nor dependent on a previously incriminated Th epitope in the RSV-A G protein. In stark contrast, BBG2Na did not induce any signs of enhanced pulmonary pathology. In conclusion, our data indicate that BBG2Na, formulated in alum, induces safe and protective immune responses against RSV-B challenge in mice. However, the duration of protective immunity will probably be insufficient to prevent RSV-B infection for the duration of the RSV epidemic season.

Current State and Challenges in Developing Respiratory Syncytial Virus Vaccines

Vaccines, 2020

Respiratory syncytial virus (RSV) is the main cause of acute respiratory tract infections in infants and it also induces significant disease in the elderly. The clinical course may be severe, especially in high-risk populations (infants and elderly), with a large number of deaths in developing countries and of intensive care hospitalizations worldwide. To date, prevention strategies against RSV infection is based on hygienic measures and passive immunization with humanized monoclonal antibodies, limited to selected high-risk children due to their high costs. The development of a safe and effective vaccine is a global health need and an important objective of research in this field. A growing number of RSV vaccine candidates in different formats (particle-based vaccines, vector-based vaccines, subunit vaccines and live-attenuated vaccines) are being developed and are now at different stages, many of them already being in the clinical stage. While waiting for commercially available sa...