ER Proteostasis Control of Neuronal Physiology and Synaptic Function (original) (raw)

Unfolded Protein Response Pathways in Neurodegenerative Diseases

The aggregation of disease-specific misfolded proteins resulting in endoplasmic reticulum stress is associated with early pathological events in many neurodegenerative diseases , and apoptotic signaling is initiated when the stress goes beyond the maximum threshold level of endoplasmic reticu-lum stress sensors. All eukaryotic cells respond to the accumulation of unfolded proteins in the endoplasmic reticulum (ER) by signaling an adaptive pathway termed as unfolded protein response (UPR). Recently, the focus of research shifted from work on specific proteins as pathogenesis in these neurodegenerative diseases towards a more specific generic pathway known as UPR. ER is a major organelle for protein quality control, and cellular stress disrupts normal functioning of ER. The UPR acts as a protective mechanism during endo-plasmic reticulum stress, but persistent long-term stress triggers UPR-mediated apoptotic pathways ultimately leading to cell death. Here in this review, we will briefly summarize the molecular events of endoplasmic reticulum stress-associated UPR signaling pathways and their potential therapeutic role in neurodegenerative diseases.

Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases

International Journal of Molecular Sciences

The endoplasmic reticulum (ER) is an important organelle involved in protein quality control and cellular homeostasis. The accumulation of unfolded proteins leads to an ER stress, followed by an adaptive response via the activation of the unfolded protein response (UPR), PKR-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) and activating transcription factor 6 (ATF6) pathways. However, prolonged cell stress activates apoptosis signaling leading to cell death. Neuronal cells are particularly sensitive to protein misfolding, consequently ER and UPR dysfunctions were found to be involved in many neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and prions diseases, among others characterized by the accumulation and aggregation of misfolded proteins. Pharmacological UPR modulation in affected tissues may contribute to the treatment and prevention of neurodegeneration. The association bet...

The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications

Molecular neurobiology, 2018

The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER...

Modulation of Endoplasmic Reticulum Stress: An Opportunity to Prevent Neurodegeneration?

CNS & Neurological Disorders - Drug Targets, 2015

Neurodegenerative diseases (e.g. Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion-related diseases) have in common the presence of protein aggregates in specific brain areas where significant neuronal loss is detected. In these pathologies, accumulating evidence supports a close correlation between neurodegeneration and endoplasmic reticulum (ER) stress, a condition that arises from ER lumen overload with misfolded proteins. Under these conditions, ER stress sensors initiate the unfolded protein response to restore normal ER function. If stress is too prolonged, or adaptive responses fail, apoptotic cell death ensues. Therefore, it was recently suggested that the manipulation of the ER unfolded protein response could be an effective strategy to avoid neuronal loss in neurodegenerative disorders. We will review the mechanisms underlying ER stress-associated neurodegeneration and discuss the possibility of ER as a therapeutic target.

Targeting Endoplasmic Reticulum Stress Pathways to Treat Neurological Disorders Associated with Protein Misfolding

annabolteus.com

and several other neurodegenerative disorders share a common neuropathology, primarily featuring the presence of abnormal protein inclusions containing specific misfolded proteins. Recent evidence indicates that alteration in organelle function is a common pathological feature of protein misfolding disorders. The endoplasmic reticulum (ER) is an essential compartment for protein folding, maturation, and secretion. Signs of ER stress have been extensively described in most experimental models of neurological disorders and more recently in the brains of human patients affected with neurodegenerative conditions. ER stress is caused by functional disturbances, which result in the accumulation of unfolded/misfolded proteins at the ER lumen. To cope with ER stress, cells activate an integrated signaling response termed the Unfolded Protein Response (UPR), which aims to reestablish homeostasis through transcriptional upregulation of genes involved in protein folding, quality control and degradation pathways. Small molecules with chaperone-like activity have been shown to alleviate ER stress and decrease protein misfolding in experimental disease settings. In this chapter we overview the role of ER stress in pathological conditions such as protein misfolding disorders and spinal cord injury, and discuss possible pharmacological strategies to target the UPR with therapeutic benefits.

The UPR in Neurodegenerative Disease: Not Just an Inside Job

Biomolecules

Neurons are highly specialized cells that continuously and extensively communicate with other neurons, as well as glia cells. During their long lifetime, the post-mitotic neurons encounter many stressful situations that can disrupt protein homeostasis (proteostasis). The importance of tight protein quality control is illustrated by neurodegenerative disorders where disturbed neuronal proteostasis causes neuronal dysfunction and loss. For their unique function, neurons require regulated and long-distance transport of membrane-bound cargo and organelles. This highlights the importance of protein quality control in the neuronal endomembrane system, to which the unfolded protein response (UPR) is instrumental. The UPR is a highly conserved stress response that is present in all eukaryotes. However, recent studies demonstrate the existence of cell-type-specific aspects of the UPR, as well as cell non-autonomous UPR signaling. Here we discuss these novel insights in view of the complex ce...

Control of mammalian brain aging by the unfolded protein response (UPR)

Aging is the major risk factor for the development of dementia and neurodegenerative disorders, and the aging brain manifests severe deficits in buffering capacity by the proteostasis network. Accordingly, we investigated the significance of the unfolded protein response (UPR), a major signaling pathway that copes with endoplasmic reticulum (ER) stress, to normal mammalian brain aging. Genetic disruption of ER stress sensor IRE1α accelerated cognitive and motor dysfunction during aging. Exogenous bolstering of the UPR by overexpressing an active form of the transcription factor XBP1 restored synaptic and cognitive function in addition to reducing cell senescence. Remarkably, proteomic profiling of hippocampal tissue indicated that XBP1s expression corrected age-related alterations in synaptic function. Collectively, our data demonstrate that strategies to manipulate the UPR sustain healthy brain aging.One Sentence SummaryThe IRE1/XBP1 pathway dictates when and how brain function dec...

Molecular Mechanisms of ER Stress and UPR in the Pathogenesis of Alzheimer’s Disease

Molecular Neurobiology, 2020

Alzheimer's disease (AD) is a progressive neurodegenerative disease involving aggregation of misfolded proteins inside the neuron causing prolonged cellular stress. The neuropathological hallmarks of AD include the formation of senile plaques and neurofibrillary tangles in specific brain regions that lead to synaptic loss and neuronal death. The exact mechanism of neuron dysfunction in AD remains obscure. In recent years, endoplasmic reticulum (ER) dysfunction has been implicated in neuronal degeneration seen in AD. Apart from AD, many other diseases also involve misfolded proteins aggregations in the ER, a condition referred to as ER stress. The response of the cell to ER stress is to activate a group of signaling pathways called unfolded protein response (UPR) that stimulates a particular transcriptional program to restore ER function and ensure cell survival. ER stress also involves the generation of reactive oxygen species (ROS) that, together with mitochondrial ROS and decreased effectiveness of antioxidant mechanisms, producing a condition of chronic oxidative stress. The unfolded proteins may not always produce a response that leads to the restoration of cellular functions, but they may also lead to inflammation by a set of different pathways with deleterious consequences. In this review, we extensively discuss the role of ER stress and how to target it using different pharmacological approaches in AD development and onset.

Endoplasmic Reticulum Stress in Brain Damage

Methods in Enzymology, 2011

The efficient functioning of the ER is indispensable for most of the cellular activities and survival. Disturbances in the physiological functions of the ER result in the activation of a complex set of signaling pathways from the ER to the cytosol and nucleus, and these are collectively known as unfolded protein response (UPR), which is aimed to compensate damage and can eventually trigger cell death if ER stress is severe or persists for a longer period. The precise molecular mechanisms that facilitate this switch in brain damage have yet to be understood completely with multiple potential participants involved. The ER stress-associated cell death pathways have been recognized in the numerous pathophysiological conditions, such as diabetes, hypoxia, ischemia/reperfusion injury, and neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and bipolar disorder. Hence, there is an emerging need to study the basic molecular mechanisms of ER stress-mediating multiple cell survival/death signaling pathways. These molecules that regulate the ER stress response would be potential drug targets in brain diseases.