Effects of nanobubble collapse on cell membrane integrity (original) (raw)
2017, Journal of Micromechanics and Molecular Physics
Recent studies have shown that ultrasound is used to open drug-carrying liposomes to release their payloads; however, a shockwave energetic enough to rupture lipid membranes can cause collateral damage to surrounding cells. Similarly, a destructive shockwave, which may be used to rupture a cell membrane in order to lyse the cell (e.g., as in cancer treatments) may also impair or destroy nearby healthy tissue. To address this problem, we use dissipative particle dynamic (DPD) simulation to investigate the addition of a cavitation bubble between the shockwave and the model cell membrane to alter the shockwave front, allowing low-velocity shockwaves to specifically damage an intended target. We focus specifically on a spherical lipid bilayer model, and note the effect of shockwave velocity, bubble size, and orientation on the damage to the model cell. We show that a cavitation bubble greatly decreases the necessary shockwave velocity required to damage the lipid bilayer and rupture the...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.