Control of expression of the vaccinia virus thymidine kinase gene (original) (raw)
Related papers
Journal of Virology
The synthesis of vaccinia virus-induced thymidine kinase is normally arrested several hours after infection. In thymidine kinase-deficient LM cells infected with IHD strain of vaccinia virus, arrest occurs whether or not viral DNA synthesis is inhibited. With virus inactivated by UV irradiation, enzyme synthesis takes place, but arrest is abolished. It is suggested that an early viral genetic function is responsible for the cessation of thymidine kinase synthesis.
Mapping and identification of the vaccinia virus thymidine kinase gene
Journal of Virology, 1982
The thymidine kinase gene of vaccinia virus (VV) was mapped on the viral genome by using cloned fragments of the viral DNA to hybridize to early viral mRNA. Individual DNA fragments that represented about half of the viral genome were assayed, both for their ability to arrest the cell-free synthesis of active VV thymidine kinase and for their ability to select functional mRNA for the viral enzyme. Both activities were located in HindIII fragment J, which maps near the middle of VV DNA and contains about 2.6% of the genome (4,800 base pairs). This DNA fragment encodes four known early polypeptides, and to determine which of these was thymidine kinase, early VV mRNA was fractionated by sucrose gradient centrifugation and used to direct cell-free synthesis of the active enzyme. The thymidine kinase mRNA cosedimented with several species that encoded polypeptides in the molecular weight range 15,000 to 25,000. Hybridization of these mRNAs to HindIII-J DNA selected a message that directe...
Archives of Virology, 1992
A polyhedrin-positive recombinant autographa californica nuclear polyhedrosis virus (AcNPV) carrying a herpes simplex virus thymidine kinase gene under the control of the Syn XIV promoter, a fusion of synthetic and linker-modified polyhedrin promoters, has been constructed. When this recombinant baculovirus was used to infect a variant of Spodoptera frugiperda cells deficient in thymidine kinase (TK-), a high level of TK activity was detected. These results, in conjunction with the demonstration that AcNPV could replicate in T K -S. frugiperda cells and no TK activity was found throughout infection, imply that the wild type virus-stimulated TK activity observed in S. frugiperda (TK +) cells is not contributed by a virus-coded enzyme.
Origin of the thymidine kinase by polyoma virus in productively infected cells
Journal of Virology
Cells of the 3T3 mouse line efficiently supported the multiplication of polyoma virus, and the infectious process was accompanied by a marked increase in thymidine kinase (TK) activity. Two lines of 5-bromodeoxyuridine-resistant 3T3 cells have been isolated. As expected, these cells incorporated practically no exogenous thymidine into their deoxyribonucleic acid (DNA) and contained negligible TK activity. Like the parental 3T3 cells, TK-lines were susceptible to productive infection by polyoma virus, but infection did not lead to an increase in TK activity. Since kinase activity did appear after infection with another virus (vaccinia) known to contain the gene(s) for that enzyme, it is concluded that TK is not one of the gene products of polyoma virus. As induction of cellular DNA synthesis by polyoma virus occurs normally when the TK-cells are infected in the stationary phase, TK cannot play a role in the determination of this phenomenon.
On the Regulation of Protein Synthesis in Vaccinia Virus Infected Cells
Journal of General Virology, 1976
All eukaryotic mRNA species show a characteristic individual translational efficiency under conditions of restricted polypeptide chain initiation caused by an increase in the osmolarity of the growth medium. In vaccinia virus infected L cells or HeLa cells virus mRNAs can be grouped into classes on the basis of their relative labelling under standard and hypertonic conditions. Under the latter conditions, most of the 'early' mRNAs possess very high translational efficiencies, most of the 'intermediate' mRNAs show an intermediate efficiency and the most prominent 'late' mRNAs show a translational efficiency which is lower than that of other virus mRNAs but still higher than the average cellular mRNA. Late in the infection cycle virus mRNAs with a relative low translational efficiency are preferentially translated under standard growth conditions whereas 'early' virus mRNAs which are still present and which show a higher translational resistance to hypertonic conditions are not translated. These results indicate a unique translational control operating late in the growth cycle of vaccinia virus.
Vaccinia virus encodes a thymidylate kinase gene: sequence and transcriptional mapping
The nucleotide sequence and deduced amino acid sequence of a vaccinia virus gene from the SailI F fragment are shown. The predicted polypeptide shares 42 % amino acid identity over a 200 amino acid region with Saccharomyces cerevisiae thymidylate kinase (TmpK) and has low homology with herpes simplex virus deoxypyrimidine kinase. Northern blotting and SI nuclease protection showed that the TmpK gene is transcribed early during infection and mapped the mRNA 5' end to immediately upstream of the second inframe ATG codon of the open reading frame (ORF). The encoded polypeptide is predicted to be 204 amino acids long (23.2 kD) and is almost colinear with yeast TmpK. Vaccinia virus possesses genes for TK and TmpK, separated by 57 kilobases of DNA, which are co-ordinately expressed and the encoded enzymes perform sequential steps in the same biochemical pathway.
Origin oftheThymidine Kinase Induced by Polyoma Virus inProductively Infected Cells
Cells of the 3T3 mouse line efficiently supported the multiplication of polyoma virus, and the infectious process was accompanied by a marked increase in thymidine kinase (TK) activity. Two lines of 5-bromodeoxyuridine-resistant 3T3 cells have been isolated. As expected, these cells incorporated practically no exogenous thymidine into their deoxyribonucleic acid (DNA) and contained negligible TK activity. Like the parental 3T3 cells, TK-lines were susceptible to productive infection by polyoma virus, but infection did not lead to an increase in TK activity. Since kinase activity did appear after infection with another virus (vaccinia) known to contain the gene(s) for that enzyme, it is concluded that TK is not one of the gene products of polyoma virus. As induction of cellular DNA synthesis by polyoma virus occurs normally when the TK-cells are infected in the stationary phase, TK cannot play a role in the determination of this phenomenon.
Characterization and temporal regulation of mRNAs encoded by vaccinia virus intermediate-stage genes
Journal of virology, 1993
The steady-state levels of mRNAs encoded by three intermediate-stage genes of vaccinia virus, A1L, A2L, and G8R, were compared with those encoded by well-characterized early- and late-stage genes. After synchronous infection of HeLa cells, the early mRNA was detected within 20 min and peaked at about 100 min; all three intermediate mRNAs were detected at 100 min and peaked at about 120 min; and the late mRNA was detected at 140 min and increased thereafter. Upon reaching maximum levels, the early and intermediate mRNAs declined at rates consistent with half-lives of about 30 min, providing the basis for rapid changes in gene expression. Intermediate mRNA was not detected when viral DNA synthesis was prevented, whereas its accumulation was enhanced by blocking translation after removal of the replication inhibitor. The 5' ends of the mRNAs initiated within a TAAAT or TAAAAT sequence in the coding DNA strand but contained a poly(A) leader of up to 30 additional bases. Diffuse band...
Journal of General Virology, 1979
Cytoplasmic RNA synthesis can be detected in vaccinia virus-infected HeLa cells in the presence of 2/zg/ml but not 2o/*g/ml of actinomycin D. When RNA synthesis is observed protein synthesis is inhibited in infected, treated cells. We had previously noted that such a correlation may also be observed in infected, cycloheximide-treated cells. If actinomycin D (20/zg/ml) is added to these cells at various times after infection and treatment, the inhibition of protein synthesis seen upon removal of cycloheximide does not continue beyond the point to which it had developed before the actinomycin D was added. These results indicate that the inhibition of protein synthesis can be correlated with the amount of cytoplasmic RNA synthesized in infected cells and that this RNA synthesis and the subsequent inhibition of protein synthesis can be prevented by sufficiently high concentrations of actinomycin D. The cytoplasmic RNA which is synthesized does not appear to consist of double-stranded RNA nor of extensive self complementary regions. The cytoplasmic RNA synthesized in infected, cycloheximide treated cells appears to consist of early virus mRNA which can function as mRNA in vitro in a cell-free system derived from normal cells. An examination of the phosphorylation of ribosomal proteins shows six additional phosphoproteins in infected cells, two of which may be observed in infected cycloheximide-treated ceils, suggesting that phosphorylation of ribosomal proteins cannot be directly correlated with the inhibition of overall protein synthesis seen in infected cycloheximide-treated cells.