Invertebrates and Phytoplankton of Great Salt Lake: Is Salinity the Driving Factor? (original) (raw)
Springer eBooks, 2020
Abstract
Great Salt Lake (GSL) is a hypersaline terminal lake and has varied historically in salinity from 6 to 28%. Because the lake’s salinity is much greater than in marine environments (~3.5%), salinity is often assumed to be the driving factor for GSL benthic and pelagic food webs. Certainly, many species cannot live in a hypersaline environment (e.g., fish), and the diversity of species capable of coping with hypersaline conditions is limited. However, the GSL’s benthic and pelagic food webs are adapted to these extreme saline conditions, and their dynamics (primary and secondary production, species abundances, etc.) respond in a complex fashion to the interplay of salinity, temperature, and nutrient availability. Therefore, focusing solely on salinity is not appropriate. In this chapter, we first explore historically how GSL food webs have been reported to change and found salinity to have limited impact. We next demonstrate that in recent years (1994–2018) GSL food webs varied far less with salinity than might be expected, even though salinity varied by 8.2–17.5%, because temperatures and nutrient availability covaried with salinity and showed more impacts than salinity alone. Finally, we employ the observations on the interplay of salinity, temperature, and nutrients to project how future climatic changes in the GSL watershed will affect primary producers and consumers and impact GSL food webs. These future climatic changes will have profound effects on GSL food web dynamics.
Gary Belovsky hasn't uploaded this paper.
Let Gary know you want this paper to be uploaded.
Ask for this paper to be uploaded.