Notches in fibrous materials: micro-mechanisms of deformation and damage (original) (raw)
Related papers
Procedia Structural Integrity, 2017
During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data.
Procedia Structural Integrity, 2018
During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data.
Procedia Structural Integrity, 2018
During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data.
Energy damage approaches of artificially notched and aged thermoplastic pipes
Procedia Structural Integrity, 2018
During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data.
Analysis of Creep Life of Steam Turbine Blade by Using Different Material
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY, 2014
Turbine Blades are the main component of any steam power plant and have to withstand in very high temperature. The main aim of this paper is to calculate the creep life of 210MW Reheat Reaction Turbine Blade by changing the different material and suggested the best material for the turbine blade, so the life of the turbine blade is increased to some extent. In this paper the modeling of blade is done in PRO-E and analysis of stress is done in ANSYS 14.5 FEA tool. After structural analysis of the turbine blade Modified Larson Miller Parameter is used to calculate the creep life of the turbine blade then the results are compared and finally some of the results are presented.
Probabilistic Life Assessment of Gas Turbine Blade Alloys under Creep
International Journal of Reliability, Risk and Safety: Theory and Application
Deformations occur gradually in the gas turbine components since they are working under high temperature and stress. In the turbine blade alloys, creep is the most significant failure mechanism. In this research, creep life has been estimated for the blade alloys by considering humidity. A method is proposed to estimate the creep life by direct consideration of humidity on the creep life of the gas turbine blade. In the proposed model, the humidity factor is added to the classic Larson Miller creep life estimation method. This model is capable of predicting creep life with known dry temperature (Water Air Ratio=0), mechanical stress, and humidity. In this approach, there is no need to measure blade temperature variation during operation. As a case study, the creep life of first-stage turbine blade alloy is predicted using the proposed method and benchmarked with published (Finite element analysis) FEA results. The reliability of the blades was estimated by considering different success criteria using Monte Carlo simulation. The reliability of the creep rupture life of Nimonic-90 steel was carried out using SCRI mode based on the Z-parameter. The scattered data has been considered for creep rupture of materials in this part. The results show that creep life increases with humidity increase. It is also shown that with an increase in mechanical stress and temperature fluctuations, the reliability of the turbine blade creep life decreases sharply.
Procedia Structural Integrity, 2016
During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data.
Dynamic stress analysis and a fracture mechanics approach to life prediction of turbine blades
Mechanism and Machine Theory, 1997
Emerging blade technologies are finding it increasingly essential to correlate blade vibrations to blade fatigue in order to assess the residual life of existing blading and for development of newer designs. In this paper an analytical code for dynamic stress analysis and fatigue life prediction of blades is presented. The life prediction algorithm is based on a combination method, which combines the local strain approach to predict the initiation life and fracture mechanics approach to predict the propagation life, to estimate the total fatigue life. The conventional stress based approach involving von Mises theory along with S-N-Mean stress diagram suffers from the drawback that it does not make allowance for the possibility of development of plastic strain zones, especially in cases of low cycle fatigue. In the present paper, strain life concepts are employed to analyse the crack initiation phenomenon. Dynamic and static stresses incurred by the blade form inputs to the life estimation algorithm. The modeling is done for a general tapered, twisted and asymmetric cross section blade mounted on a rotating disc at a stagger angle. Blade damping is non-linear in nature and a numerical technique is employed for estimation of blade stresses under typical nozzle excitation. Critical cases of resonant conditions of blade operation are considered. Neuber's rule is applied to the dynamic stresses to obtain the elasto-plastic strains and then the material hysteresis curve is used to iteratively solve for the plastic stress. Static stress effects are accounted for and crack initiation life is estimated by solving the strain life equation. Crack growth formulations are then applied to the initiated crack to analyse the propagation of crack leading to failure. The engineering approximations involved are stated and the algorithm is numerically demonstrated for typical conditions of blade operations. NOMENCLATURE A-area of cross-section a, b-coefficients in trigonmetric series of forcing functions a~, b~-initial and final crack lengths b-fatigue strength exponent c-fatigue ductility exponent C-torsional stiffness [C]~ Samping matrix D,-depth of defect E-modulus of elasticity e-engineering nominal strain F-correction factor for stress intensity factor F~, F,-forcing functions /-shape function for bending deflections /-shape function for angular deflections H,,~-rnth harmonic response in the kth mode h-shape function for bending and twisting moments L-Ao(I-z) + 1 A I (F-z 2) + " • • , A.
Physical Manifestation of a90/95 in Remnant Life Revision Studies of Aero-engine Components
Procedia Structural Integrity, 2019
During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data.
The methodology of transformation of the nominal loading process into a root of notch
Procedia structural integrity, 2017
During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data.