Sodium Dodecyl Sulfate Analogs as a Potential Molecular Biology Reagent (original) (raw)
Abstract
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (72)
- Izumida, K.; Hara, Y.; Furukawa, Y.; Ishida, K.; Tabata, K.; Morita, E. Purification of hepatitis C virus core protein in non- denaturing condition. J. Virol. Mthods 2023, 323, 114852. [CrossRef] [PubMed]
- Krishnan, S.; Sasi, S.; Kodakkattumannil, P.; Senaani, S.; Lekshmi, G.; KOttackal, M.; Amiri, K.M.A. Cationic and anionic detergent buffers in sequence yield high-quality genomic DNA from diverse plant species. Anal. Biochem. 2024, 1, 115372. [CrossRef] [PubMed]
- Niebling, S.; Burastero, O.; Garcia-Alai, M. Biophysical characterization of membrane proteins. Methods Mol. Biol. 2023, 2652, 215-230. [CrossRef] [PubMed]
- Linke, D. Detergents: An overview. Methods Enzymol. 2009, 463, 603-617. [CrossRef] [PubMed]
- Miyake, J.; Ochiai-Yanagi, S.; Kasumi, T.; Takagi, T. Isolation of a membrane protein from R rubrun chromatophores and its abnormal behavior in SDS-polyacrylamide gel electrophoresis due to a high binding capacity for SDS. J. Biochem. 1978, 83, 1679-1686. [CrossRef]
- Neset, L.; Takayidza, G.; Berven, F.S.; Hernandez-Valladares, M. Comparing effciency of lysis buffer solutions and sample preparation methods for liquid chromatography-mass spectrometry analysis of human cells and plasma. Molecules 2022, 27, 3390.
- Kubo, K.; Isemura, T.; Takagi, T. Electrophoretic behavior of micellar and monomeric sodium dodecyl sulfate in polyacrylamide gel electrophoresis with reference to those of SDS-protein complexes. Anal. Biochem. 1979, 92, 243-247. [CrossRef]
- Sakuma, C.; Nakagawa, M.; Tomioka, Y.; Maruyama, T.; Entzminger, K.; Fleming, J.K.; Shibata, T.; Kurosawa, Y.; Okumura, C.J.; Arakawa, T. Western blotting of native proteins from agarose gels. Biotechniques 2022, 72, 207-218. [CrossRef]
- Akuta, T.; Maruyama, T.; Sakuma, C.; Nakagawa, M.; Tomioka, Y.; Entzminger, K.; Fleming, J.K.; Sato, R.; Shibata, T.; Kurosawa, Y. A new method to characterize conformation-specific antibody by a combination of agarose native gel electrophoresis and contact blotting. Antibodies 2022, 11, 36. [CrossRef]
- Dam, D.V.; Valkenburg, F.; Kolen, K.V.; Pintelon, I.; Timmermans, J.-P.; Deyn, P.P.D. Behavioral and neuropathological phenotyping of the Tau58.2 and Tau58/4 transgenic mouse models for FTDP-17. Life 2023, 13, 2088. [CrossRef]
- Matsuki, H.; Mandai, S.; Shiwaku, H.; Koide, T.; Takahashi, N.; Yanagi, T.; Inaba, S.; Ida, S.; Fujiki, T.; Mori, Y.; et al. Chronic kidney disease causes blood-brain barrier breakdown via urea-activated matrix metalloproteinase-2 and insolubility of tau protein. Aginig 2023, 25, 15. [CrossRef]
- Tomé, S.O.; Tsaka, G.; Ronisz, A.; Ospitalieri, S.; Gawor, K.; Gomes, L.A.; Otto, M.; von Arnim, C.A.F.; Damme, P.V.; Bosch, L.V.D. TDP-43 pathology is associated with increased tau buerdens and seeding. Mol. Neurodegener. 2023, 18, 71. [CrossRef] [PubMed]
- Chisnall, B.; Johnson, C.; Kulaberoglu, Y. Insoluble protein purification with Sarkosyl: Facts and precautions. Methods Mol. Biol. 2014, 1091, 179-186. [CrossRef] [PubMed]
- Morrow, B.H.; Koening, P.H.; Shen, J.K. Self-assembly and bilayer-micelle transition of fatty acids studied by replica-exchange constant molecular dynamics. Langmiur 2013, 29, 14823-14830. [CrossRef] [PubMed]
- Bordes, R.; Tropsch, J.; Holmberg, K. Role of an amide bond for self-assembly of surfactants. Langmuir 2010, 26, 3077-3083. [CrossRef] [PubMed]
- Xia, J.; Nnanna, I.A.; Sakamoto, K. Amino acid surfactants: Chemistry, synthesis, and properties. In Protein-Based Surfactants. Synthesis, Physicochemical Properties, and Applications; Nnanna, I.A., Xia, J., Eds.; Marcel Dekker: New York, NY, USA, 2001; pp. 75-122. Available online: https://books.google.co.jp/books?hl=ja&lr=lang\_ja%7Clang\_en&id=CWK1DwAAQBAJ&oi=fnd&pg= PA75&ots=fEoUpD7MJE&sig=XcfIl8ys3o410mGlCPLT26tMoYc&redir_esc=y#v=onepage&q&f=false (accessed on 4 March 2014).
- Arakawa, T.; Kita, Y.; Ejima, D. Refolding technology for scFv using a new detergent, N-lauroyl-L-glutamate and arginine. Antibodies 2012, 1, 215-238. [CrossRef]
- Ariki, R.; Hirano, A.; Arakawa, T.; Shiraki, K. Drug solubilization effect of lauroyl-L-glutamate. J. Biochem. 2012, 151, 27-33.
- Yumioka, R.; Shimada, M.; Takino, K.; Ejima, D. Evaluation Method for Detergents. Japan Patent JP 2006292686, 26 October 2006.
- Kudou, M.; Yumioka, R.; Ejima, D.; Arakawa, T.; Tsumoto, K. A novel protein refolding system using lauroyl-L-glutamate as a solubilizing detergent and arginine as a folding assisting agent. Protein Expr. Purif. 2011, 75, 46-54. [CrossRef]
- Carratalá, J.V.; Atienza-Garriga, J.; López-Laguna, H.; Vázquez, E.; Villaverde, A.; Sánchez, J.M.; Ferrer-Miralles, N. Enhanced recombinant protein capture, purity and yield from crude bacterial cell extracts by N-Lauroylsarcosine-assisted affinity chro- matography. Microb. Cell Fact. 2023, 22, 81. [CrossRef]
- Chung, J.M.; Lee, S.; Jung, H.S. Effective non-denaturing purification method for improving the solubility of recombinant actin-binding proteins produced by bacterial expression. Protein Expr. Purif. 2017, 133, 193-198. [CrossRef]
- Peternel, S.; Grdadolnik, J.; Garberc-Porekar, V.; Komel, R. Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb. Cell Fact. 2008, 7, 34. [CrossRef]
- Gentry, D.R.; Burgess, R.R. Overproduction and purification of the ω subunit of Escherichia coli RNA polymerase. Protein Expr. Purifi. 1990, 1, 81. [CrossRef]
- Burgess, R.R. Purification of overproduced Escherichia coli RNA polymerase sigma factors by solubilizing and refolding from Sarkosyl. Methods Enzymol. 1996, 273, 145-149. [CrossRef]
- Lu, H.S.; Clogston, C.L.; Narhi, L.O.; Merewether, L.A.; Pearl, W.R.; Boone, T.S. Folding and oxidation of recombinant human granulocyte colony stimulating factor produced in Escherichia coli. J. Biol. Chem. 1992, 267, 8770-8777. [CrossRef]
- Maltoni, G.; Scutteri, L.; Mensitieri, F.; Piaz, F.D.; Hochkoeppler, A. High-yield production in Escherichia coli and convenient purification of a candidate vaccine against SARS-CoV-2. Biotechnol. Lett. 2022, 44, 1313-1322. [CrossRef]
- Padhiar, A.A.; Chanda, W.; Joseph, T.P.; Guo, X.; Liu, M.; Sha, L.; Batool, S.; Gao, Y.; Zhang, W.; Huang, M. Comparative study to develop a single method for retrieving wide class of recombinant proteins from classical inclusion bodies. Appl. Microbiol. Biotechnol. 2018, 102, 2363-2377. [CrossRef] [PubMed]
- Rani, R.M.; Syngkli, S.; Nongkhlaw, J.; Das, B. Expression and characterization of human glycerol kinase: The role of solubilizing agents and molecular chaperones. Biosci. Rep. 2023, 43, BSR20222258. [CrossRef]
- Ishikawa, S.; Ishikawa, H.; Sato, A. Improved refolding of a human IgG Fc (CH2-CH3) scaffold from its inclusion body in E. coli by alkaline solubilization. Biol. Pharm. Bull. 2022, 45, 284-291. [CrossRef]
- Storrs, S.B.; Tou, J.S.; Ballinger, J.M. Method for Solubilization and Renaturation of Somatotropins. U.S. Patent US6410694B, 15 December 1999.
- Yumioka, R.; Ejima, D. Protein Refolding Method. Japan Patent WO 2009136568A1, 12 November 2009.
- Kudou, M.; Ejima, D.; Sato, H.; Yumioka, R.; Arakawa, T.; Tsumoto, K. Refolding single-chain antibody (scFv) using lauroyl-L- glutamate as a solubilizing detergent and arginine as a refolding additive. Protein Expr. Purif. 2011, 77, 68-74. [CrossRef]
- Melki, R.; Carlier, M.F.; Pantaloni, D.; Timasheff, S.N. Cold depolymerization of microtubules to double rings: Geometric stabilization of assemblies. Biochemistry 1989, 28, 9143-9152. [CrossRef]
- Julien, C.; Bretteville, A.; Planel, E. Biochemical isolation of insoluble tau in transgenic mouse models of tauopathies. Methods Mol. Biol. 2012, 849, 473-491. [CrossRef] [PubMed]
- Greenberg, S.G.; Davies, P. A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacry- lamide gel electrophoresis. Proc. Natl. Acad. Sci. USA 1990, 87, 5827-5831. [CrossRef] [PubMed]
- Kondo, J.; Honda, T.; Mori, H.; Hamada, Y.; Miura, R.; Ogawa, M.; Ihara, Y. The carboxyl third of tau is tightly bound to paired helical filaments. Neuron 1988, 1, 827-834. [CrossRef]
- Tarutani, A.; Adachi, T.; Akatsu, H.; Hashizume, Y.; Hasegawa, K.; Saito, Y.; Robinson, A.C.; Mann, D.M.A.; Yoshida, M.; Maruyama, S. Ultrastrucrural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol. 2022, 143, 613-640. [CrossRef] [PubMed]
- Fitzpatrick, A.W.P.; Falcon, B.; He, S.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Crowther, R.A.; Ghetti, B.; Goedert, M.; Scheres, S.H.W. Cryo-EM structures of tau filaments frin Alzheimer's disease. Nature 2017, 547, 185-190. [CrossRef] [PubMed]
- Stern, A.M.; Yang, Y.; Jin, S.; Yamashita, K.; Meunier, A.L.; Liu, W.; Cai, Y.; Ericsson, M.; Liu, L.; Goedert, M. Abundant Aß fibrils in ultracentrifugal supernatants of aqueous extracts from Alzheimer's disease brains. Neuron 2012, 111, 2012-2020. [CrossRef] [PubMed]
- Kryndushkin, D.; Pripuzova, N.; Shewmaker, F.P. Isolation and analysis of prion and amyloid aggregates. Cold Spring Harb. Protoc. 2017, 2, 118-125. [CrossRef]
- Nizhnikov, A.A.; Alexandrov, A.I.; Ryzhova, T.A.; Mitkevich, O.V.; Dergalev, A.A.; Ter-Avanesyan, M.D.; Galkin, A.P. Proteomic screening for amyloid proteins. PLoS ONE 2014, 9, e116002. [CrossRef]
- Belashova, T.A.; Valina, A.A.; Sysoev, E.L.; Velizhanina, M.E.; Zelensky, A.A.; Galkin, A.P. Search and identification of amyloid proteins. Methods Protoc. 2023, 6, 16. [CrossRef]
- Ryzhova, T.A.; Sopova, J.V.; Zadorsky, S.P.; Siniukova, V.A.; Sergeeva, A.V.; Galkina, S.A.; Nizhnikov, A.A.; Shenfeld, A.A.; Volkov, K.V.; Galkin, A.P. Screening for amyloid proteins in the yeast proteome. Curr. Genet. 2018, 64, 469-478. [CrossRef]
- Sergeeva, A.V.; Galkin, A.P. Functional amyloids of eukaryotes: Criteria, classification, and biological significance. Curr. Genet. 2020, 66, 849-866. [CrossRef] [PubMed]
- Sopova, J.V.; Koshel, E.I.; Belashova, T.A.; Zadorsky, S.P.; Sergeeva, A.V.; Siniukova, V.A.; Shenfeld, A.A.; Velizhanina, M.E.; Volkov, K.V.; Nizhnikov, A.A. RNA-binding protein FXR1 is presented in rat brain in amyloid form. Sci. Rep. 2019, 9, 18983. [CrossRef] [PubMed]
- Antonets, K.S.; Belousov, M.V.; Sulatskaya, A.I.; Belousova, M.E.; Kosolapova, A.O.; Sulatsky, M.I.; Andreeva, E.A.; Zykin, P.A.; Malovichko, Y.V.; Shtark, O.Y. Accumulation of storage proteins in plant seeds is mediated by amyloid formation. PLoS Biol. 2020, 18, e3000564. [CrossRef] [PubMed]
- Isidan, A.; Liu, S.; Li, P.; Lashmet, M.; Smith, L.J.; Hara, H.; Cooper, D.K.C.; Ekser, B. Decellularization methods for developing porcine corneal xenografts and future perspectives. Xenotransplantation 2019, 26, e12564. [CrossRef] [PubMed]
- da Palma, R.K.; Fratini, P.; Schiavo Matias, G.S.; Cereta, A.D.; Guimarães, L.L.; Anunciação, A.R.A.; de Oliveira, L.V.F.; Farre, R.; Miglino, M.A. Equine lung decellularization: A potential approach for in vitro modeling the role of the extracellular matrix in asthma. J. Tissue Eng. 2018, 9, 2041731418810164. [CrossRef] [PubMed]
- Dong, M.; Zhao, L.; Wang, F.; Hu, X.; Li, H.; Liu, T.; Zhou, Q.; Shi, W. Rapid porcine corneal decellurization through the use of sodium N-lauroyl glutamate and supernuclease. J. Tissue Eng. 2019, 10, 2041731419875876. [CrossRef]
- Chen, Y.; Gin, J.W.; Wang, Y.; de Raad, M.; Tan, S.; Hillson, N.J.; Northen, T.R.; Adams, P.D.; Petzold, J. Alkaline-SDS cell lysis of microbes with acetone protein precipitation for proteomic sample preparation in 96-well plate format. PLoS ONE 2023, 18, e0288102. [CrossRef]
- DeCaprio, J.; Kohl, T.O. Denaturing lysis of cells for immunoprecipitation. Cold Spring Harb. Protoc. 2020, 2020, 098616. [CrossRef]
- Massiah, M.A.; Wright, K.M.; Du, H. Obtaining soluble folded proteins from inclusion bodies using Sarkosyl, Triton X-100, and CHAPS: Application to LB and M9 minimal media. Curr. Proto. Protein Sci. 2016, 84, 6-13. [CrossRef]
- Wang, H.; Gill, C.O.; Yang, X. Use of sodium lauroyl sarcosinate (Sarkosyl) in viable real-time PCR for enumeration of Escherichia coli. J. Microbiol. Methods 2014, 98, 89-93. [CrossRef]
- Brown, R.N.; Romine, M.F.; Schepmoes, A.A.; Smith, R.D.; Lipton, M.S. Mapping the subcellular proteome of Shewanella oneidensis MR-1 using Sarkosyl-based fractionation and LC-MS/MS protein identification. J. Proteome Res. 2010, 9, 4454-4463. [CrossRef] [PubMed]
- Bell, K.S.; Kuyukina, M.S.; Heidbrink, S.; Philp, J.C.; Aw, D.W.; Ivshina, I.B.; Christofi, N. Identification and environmental detection of Rhodococcus species by 1S rDNA-targeted PCR. J. Appl. Microbiol. 1999, 87, 472-480. [CrossRef] [PubMed]
- Elke, C.; Vögtli, M.; Rauch, P.; Spindler-Barth, M.; Lezzi, M. Expression of EcR and USP in Escherichi coli: Purification and functional studies. Arch. Insect Biochem. Physiol. 1997, 35, 59-69. [CrossRef]
- Frankel, S.; Sohn, R.; Leinwand, L. The use of salkosyl in generating soluble protein after bacterial expression. Proc. Natl. Acad. Sci. USA 1991, 88, 1192-1196. [CrossRef] [PubMed]
- Lin, S.-H.; Guidotti, G. Purification of membrane proteins. Methods Enzymol. 2009, 463, 619-629. [CrossRef] [PubMed]
- Smith, S.M. Strategies for the purification of membrane proteins. Methods Mol. Biol. 2017, 1485, 389-400. [CrossRef] [PubMed]
- Hofmeister, F. Zur Lehre von der wirkung der salze. Arch. Expt. Pathol. Pharmakol. 1888, 24, 247-260. [CrossRef]
- Arakawa, T.; Timasheff, S.N. Mechanism of protein salting in and salting out by divalent cation salts: Balance between hydration and salt binding. Biochemistry 1984, 23, 5912-5923. [CrossRef]
- Arakawa, T.; Timasheff, S.N. Protein stabilization and destabilization by guanidinium salts. Biochemistry 1984, 23, 5924-5929.
- Petyaev, I.M.; Zigangirova, N.A.; Tsibezov, V.V.; Ross, A.; Bashmakov, Y.K. Monoclonal antibodies against lipopolysaccharide of Chlamydia trachomatis with cross reactivity to human ApoB. Hybridoma 2011, 30, 131-136. [CrossRef]
- Impeller, D. Hemoglobin Binding Protein from Actinobacillus pleuropneumoniae: A novel Method for Extraction and Isolation. 2007. Available online: https://escholarship.mcgill.ca/concern/thesis/z029p754m (accessed on 1 November 2023).
- Nandy, A.; Shekhar, S.; Paul, B.K.; Mukherjee, S. Exploring the nucleobase-specific hydrophobic interaction of cryptolepine hydrate with RNA and its subsequenct sequestration. Langmuir 2021, 37, 11176-11187. [CrossRef] [PubMed]
- Reichel, C. SARKOSYL-PAGE: A new electrophoretic method for the separation and immunological detection of PEGylated proteins. Methods Mol. Biol. 2012, 869, 65-79. [CrossRef] [PubMed]
- Huang, L.; Kuo, X.; Zheng, W.; Xiao, X.; Li, C.; Liu, M.; Jiang, L. 05SAR-PAGE: Separation of protein dimerization and modification using a gel with 0.5% Sarkosyl. Anal. Chim. Acta 2020, 1101, 193-198. [CrossRef]
- Tao, H.; Liu, W.; Simmons, B.N.; Harris, H.K.; Cox, T.C.; Massiah, M.A. Purifying natively folded proteins from inclusion bodies using sarkosyl, Triton X-100, and CHAPS. BioTechniques 2010, 48, 61-64. [CrossRef] [PubMed]
- Hu, J.; Sha, W.; Yuan, S.; Wu, J.; Huang, Y. Aggregation, transmission, and toxicity of the microtubule-associated protein tau. A complex comprehension. Int. J. Mol. Sci. 2023, 24, 15023. [CrossRef]
- Maeda, S.; Sahara, N.; Saito, Y.; Murayama, M.; Yoshiike, Y.; Kim, Y.; Miyasaka, T.; Murayama, S.; Ikai, A.; Takashima, A. Granular tau oligomers as intermediates of tau filaments. Biochemistry 2007, 46, 3856-3861. [CrossRef]
- Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.