Classifiers for data-driven deep sentence generation (original) (raw)

Data-driven sentence generation with non-isomorphic trees

Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2015

structures from which the generation naturally starts often do not contain any functional nodes, while surface-syntactic structures or a chain of tokens in a linearized tree contain all of them. Therefore, data-driven linguistic generation needs to be able to cope with the projection between non-isomorphic structures that differ in their topology and number of nodes. So far, such a projection has been a challenge in data-driven generation and was largely avoided. We present a fully stochastic generator that is able to cope with projection between non-isomorphic structures. The generator, which starts from PropBank-like structures, consists of a cascade of SVM-classifier based submodules that map in a series of transitions the input structures onto sentences. The generator has been evaluated for English on the Penn-Treebank and for Spanish on the multi-layered Ancora-UPF corpus.

Recursive Top-Down Production for Sentence Generation with Latent Trees

Findings of the Association for Computational Linguistics: EMNLP 2020, 2020

We model the recursive production property of context-free grammars for natural and synthetic languages. To this end, we present a dynamic programming algorithm that marginalises over latent binary tree structures with N leaves, allowing us to compute the likelihood of a sequence of N tokens under a latent tree model, which we maximise to train a recursive neural function. We demonstrate performance on two synthetic tasks: SCAN (Lake and Baroni, 2017), where it outperforms previous models on the LENGTH split, and English question formation (McCoy et al., 2020), where it performs comparably to decoders with the ground-truth tree structure. We also present experimental results on German-English translation on the Multi30k dataset (Elliott et al., 2016), and qualitatively analyse the induced tree structures our model learns for the SCAN tasks and the German-English translation task.

Explicit Syntactic Guidance for Neural Text Generation

arXiv (Cornell University), 2023

Most existing text generation models follow the sequence-to-sequence paradigm. Generative Grammar suggests that humans generate natural language texts by learning language grammar. We propose a syntax-guided generation schema, which generates the sequence guided by a constituency parse tree in a topdown direction. The decoding process can be decomposed into two parts: (1) predicting the infilling texts for each constituent in the lexicalized syntax context given the source sentence; (2) mapping and expanding each constituent to construct the next-level syntax context. Accordingly, we propose a structural beam search method to find possible syntax structures hierarchically. Experiments on paraphrase generation and machine translation show that the proposed method outperforms autoregressive baselines, while also demonstrating effectiveness in terms of interpretability, controllability, and diversity.

Sentence Generation Using Selective Text Prediction

ComputaciĆ³n y Sistemas, 2019

Text generation based on comprehensive datasets has been a well-known problem from several years. The biggest challenge is in creating a readable and coherent personalized text for specific user. Deep learning models have had huge success in the different text generation tasks such as script creation, translation, caption generation etc. Most of the existing methods require large amounts of data to perform simple sentence generation that may be used to greet the user or to give a unique reply. This research presents a novel and efficient method to generate sentences using a combination of Context Free Grammars and Hidden Markov Models. We have evaluated using two different methods, the first one is using a score similar to the BLEU score. The proposed implementation achieved 83% precision on the tweets dataset. The second method of evaluation being a subjective evaluation for the generated messages which is observed to be better than other methods.

The Survey: Text Generation Models in Deep Learning

Journal of King Saud University - Computer and Information Sciences

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

FORGe at SemEval-2017 Task 9: Deep sentence generation based on a sequence of graph transducers

Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 2017

We present the contribution of Universitat Pompeu Fabra's NLP group to the Sem-Eval Task 9.2 (AMR-to-English Generation). The proposed generation pipeline comprises: (i) a series of rule-based graphtransducers for the syntacticization of the input graphs and the resolution of morphological agreements, and (ii) an off-theshelf statistical linearization component.

Neural sentence generation from formal semantics

Proceedings of the 11th International Conference on Natural Language Generation, 2018

Sequence-to-sequence models have shown strong performance in a wide range of NLP tasks, yet their applications to sentence generation from logical representations are underdeveloped. In this paper, we present a sequence-to-sequence model for generating sentences from logical meaning representations based on event semantics. We use a semantic parsing system based on Combinatory Categorial Grammar (CCG) to obtain data annotated with logical formulas. We augment our sequence-to-sequence model with masking for predicates to constrain output sentences. We also propose a novel evaluation method for generation using Recognizing Textual Entailment (RTE). Combining parsing and generation, we test whether or not the output sentence entails the original text and vice versa. Experiments showed that our model outperformed a baseline with respect to both BLEU scores and accuracies in RTE.

Learning Natural Language Generation from Scratch

2021

This paper introduces TRUncated ReinForcement Learning for Language (TrufLL), an original approach to train conditional language models from scratch by only using reinforcement learning (RL). As RL methods unsuccessfully scale to large action spaces, we dynamically truncate the vocabulary space using a generic language model. TrufLL thus enables to train a language agent by solely interacting with its environment without any task-specific prior knowledge; it is only guided with a task-agnostic language model. Interestingly, this approach avoids the dependency to labelled datasets and inherently reduces pretrained policy flaws such as language or exposure biases. We evaluate TrufLL on two visual question generation tasks, for which we report positive results over performance and language metrics, which we then corroborate with a human evaluation. To our knowledge, it is the first approach that successfully learns a language generation policy (almost) from scratch.

Large-Scale Transfer Learning for Natural Language Generation

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Large-scale pretrained language models define state of the art in natural language processing, achieving outstanding performance on a variety of tasks. We study how these architectures can be applied and adapted for natural language generation, comparing a number of architectural and training schemes. We focus in particular on open-domain dialog as a typical high entropy generation task, presenting and comparing different architectures for adapting pretrained models with state of the art results.