Strong approximation of diffusion processes by transport processes (original) (raw)
1979, Kyoto Journal of Mathematics
Abstract
AI
This paper investigates the strong approximation of general one-dimensional diffusion processes using linear transport processes. By establishing an affirmative answer to whether such approximations can exist, it builds on previous findings related to Brownian motion and explores the convergence of transport processes to diffusion phenomena. The work not only addresses a central mathematical question but also aims to develop computational methods for simulating transport processes with implications in applied sciences such as neutron transport and seismic motion.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (18)
- B reim an, L . ( 1 9 6 8 ) . P ro b ab ility . A ddison-W esley, R e a d in g , Mass. C a s e , K . M . a n d Z w eifel, P. F . ( 1 9 6 7 ) . L in e ar T ran sp o rt T h e o ry . Addison-Wesley, R e a d in g , Mass.
- Doob, J. L . ( 1 9 5 3 ) . S tochastic Processes. W iley, N e w Y o rk .
- Freedman, D. (1 9 7 1 ). Brow nian M otion and D iffu s io n . Holden-Day, San Francisco.
- G ik h m a n , I. I. a n d Skorokhod, A . V . (1968). S toch a stic D ifferen tia l E qu a tion s. S p rin ger-V erlag, N ew Y ork.
- G orostiza, L . G . (1 9 7 3 ). A n in v a r ia n c e principle f o r a c la s s o f d-dimensional polygonal random functions. Trans. A m er. M ath . S o c. V o l. 177, 413-445.
- G riego, R . J., H eath, D . a n d Ruiz-Moncayo, A . (1 9 7 1 ). Almost sure convergence o f uniform tr a n s p o r t processes to Brownian m o tio n . A n n . M a th . S t a t ., V ol. 42, No. 3, 1129-1131.
- K a c , M . (1 9 5 6 ). Some Stochastic Problems i n Physics an d M a th em a tics. Magnolia Petroleum Co. L e c tu re s in p u re a n d applied sc ie n c e . No. 2 . Reprinted in p a r t as (1974). A stochastic model related to th e telegrap h er's equatio n . R o cky M tn . J. M ath., V o l. 4 , No. 3, 497-509.
- Knight, F. B. ( tio n . Trans. Amer. M ath. S oc., V ol. 103, 218-228.
- Papanicolaou, G . (1 9 7 5 ). Asymptotic analysis o f tra n sp o rt p ro cesses. B ull. Amer. M ath. S oc., V ol. 81, No. 2, 330-392.
- P insky, M . (1 9 6 8 ). Differential equations with a sm all param eter a n d th e c e n tra l li m it theorem f o r functions defined o n a fin ite M arkov c h a in . Z . W ahrschein. u n d V erw . G eb., V o l. 9, 101-111.
- Q uiring, D . (1 9 7 2 ). Random evolutions o n d if f u s io n p ro cesses. Z . W ahrschein. u n d V erw . G eb., V o l. 23, 230-244.
- Skorokhod, A . V . (R and om Processes. Addison- W esley, R eading, Mass.
- Stone, C . J. (1 9 6 3 ). Limit theorems f o r random walks, birth a n d death processes, and diffusion p ro cesses. Illinois J . M ath., V ol. 7, 638-660.
- Stroock, D. W. a n d V arad h an , S. R. S . (1 9 6 9 ). Diffusion processes with continuous coefficients : I , I I . C om m . P ure A ppl. M a th . 11, 22, 345-400; 479-530.
- T re v e s, F . (1 9 6 7 ). T op ologica l V ector S p a ces, D istrib u tion s, a n d K ern els. Acade- m ic P ress, N e w Y o rk .
- Watanabe, T . (1 9 6 8 ). A p p ro x im a tio n o f uniform t r a n s p o r t p ro cess o n a finite interval to Brownian m o tio n . N a g o y a M a th . J., V o l. 32, 297-314.
- Watanabe, T . (1 9 6 9 ). C o n v e rg en c e o f tra n sp o rt process to d iffu sio n . P roc. Japan A cad., V ol. 45, 470-472.
- W ong, E. a n d Z akai, M . (1 9 6 9 ). R iem an n -S tieltjes a p p ro x im a tio n s o f stochastic in teg rals. Z eit. W ah rs., V o l. 12, 87-97.