Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway (original) (raw)

Abstract

The weathering rate of carbonate minerals is several orders of magnitude higher than for silicate minerals. Therefore, small amounts of carbonate minerals have the potential to control the dissolved weathering loads in silicate-dominated catchments. Both weathering processes produce alkalinity under the consumption of CO2. Given that only alkalinity generation from silicate weathering is thought to be a long-term sink for CO2, a misattributed weathering source could lead to incorrect conclusions about long-and short-term CO2 fixation. In this study, we aimed to identify the weathering sources responsible for alkalinity generation and CO2 fixation across watershed scales in a degrading permafrost landscape in northern Norway, 68.7-70.5 °N, and on a temporal scale, in a subarctic headwater catchment on the mountainside of Iskorasfjellet, characterized by sporadic permafrost and underlain mainly by silicates as the alkalinity-bearing lithology. By analysing total alkalinity (AT) and dissolved inorganic carbon (DIC) concentrations, as well as the stable isotope signature of the latter (δ 13 C-DIC) in conjunction with dissolved cation and anion loads, we found that AT was almost entirely derived from weathering of the sparse carbonate minerals. We propose that in the headwater catchment, the riparian zone is a hotspot area of AT generation and release due to its enhanced hydrological connectivity, and that the weathering load contribution from the uphill catchment is limited by insufficient contact time of weathering agent and weatherable material. By using stable water isotopes, it was possible to explain temporal variations in AT concentrations following a precipitation event due to surface runoff. In addition to carbonic acid, sulphuric acid, probably originating from pyrite oxidation, is shown to be a potential corrosive reactant. An increased proportion of sulphuric acid as a potential weathering agent may have resulted in a decrease in AT. Therefore, carbonate weathering in the studied area should be considered not only as a short-term CO2 sink, but also as a potential CO2 source. Finally, we found that AT increased with decreasing permafrost probability, and attributed this relation to an increased

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (127)

  1. https://doi.org/10.5194/bg-2022-205
  2. Preprint. Discussion started: 2 November 2022 c Author(s) 2022. CC BY 4.0 License. https://doi.org/10.5194/bg-2022-205
  3. Preprint. Discussion started: 2 November 2022
  4. References Aas, W., Eckhardt, S., Fiebig, M., Solberg, S., Platt, S. M., Yttri, K. E., and Zwaaftink, C. G.: Monitoring of long-range transported air pollutants in Norway: NILU report 13/2021, Norwegian Environment Agency, Kjeller, 2021.
  5. Amiotte Suchet, P., Probst, J.-L., and Ludwig, W.: Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO 2 uptake by continental weathering and alkalinity river transport to the oceans, Global Biogeochem. Cycles, 17, n/a-n/a, doi:10.1029/2002GB001891, 2003.
  6. Amundson, R., Stern, L., Baisden, T., and Wang, Y.: The isotopic composition of soil and soil-respired CO2, Geoderma, 82, 83-114, doi:10.1016/S0016-7061(97)00098-0, 1998.
  7. Beel, C. R., Heslop, J. K., Orwin, J. F., Pope, M. A., Schevers, A. J., Hung, J. K. Y., Lafrenière, M. J., and Lamoureux, S. F.: Emerging dominance of summer rainfall driving High Arctic terrestrial-aquatic connectivity, Nature communications, 12, 1448, doi:10.1038/s41467-021-21759-3, 2021.
  8. Berger, T. W., Türtscher, S., Berger, P., and Lindebner, L.: A slight recovery of soils from Acid Rain over the last three decades is not reflected in the macro nutrition of beech (Fagus sylvatica) at 97 forest stands of the Vienna Woods, Environmental pollution (Barking, Essex 1987), 216, 624-635, doi:10.1016/j.envpol.2016.06.024, 2016.
  9. Berner, E. K. and Berner, R. A.: The global water cycle: Geochemistry and environment, Prentice-Hall, Inc, Englewood Cliffs, 397 pp., 1987.
  10. Berner, R. A., Lasaga, A. C., and Garrels, R. M.: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, American Journal of Science, 283, 641-683, doi:10.2475/ajs.283.7.641, 1983.
  11. Blum, J. D., Gazis, C. A., Jacobson, A. D., and Page Chamberlain, C.: Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series, Geol, 26, 411, doi:10.1130/0091- 7613(1998)026%3C0411:CVSWIT%3E2.3.CO;2, 1998.
  12. Böttcher, M. E.: The Stable Isotopic Geochemistry of the Sulfur and Carbon Cycles in a Modern Karst Environment, Isotopes in environmental and health studies, 35, 39-61, doi:10.1080/10256019908234078, 1999.
  13. Böttcher, M. E. and Schmiedinger, I.: The impact of temperature on the water isotope (2H/1H, 17O/16O, 18O/16O) fractionation upon transport through a low-density polyethylene membrane, Isotopes in environmental and health studies, 57, 183-192, doi:10.1080/10256016.2020.1845668, 2021.
  14. Braathen, A. and Davidsen, B.: Structure and stratigraphy of the Palaeoproterozoic Karasjok Greenstone Belt, north Norway -regional implications, Norsk Geologisk Tidsskrift, 80, 33-50, doi:10.1080/002919600750042663, 2000.
  15. Brand, W. A. and Coplen, T. B.: Stable isotope deltas: tiny, yet robust signatures in nature, Isotopes in environmental and health studies, 48, 393-409, doi:10.1080/10256016.2012.666977, 2012. https://doi.org/10.5194/bg-2022-205
  16. Preprint. Discussion started: 2 November 2022
  17. Campeau, A., Wallin, M. B., Giesler, R., Löfgren, S., Mörth, C.-M., Schiff, S., Venkiteswaran, J. J., and Bishop, K.: Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes, Scientific reports, 7, 9158, doi:10.1038/s41598-017-09049-9, 2017.
  18. Camporese, M., Penna, D., Borga, M., and Paniconi, C.: A field and modeling study of nonlinear storage-discharge dynamics for an Alpine headwater catchment, Water Resour. Res., 50, 806-822, doi:10.1002/2013WR013604, 2014.
  19. Cerling, T. E., Solomon, D., Quade, J., and Bowman, J. R.: On the isotopic composition of carbon in soil carbon dioxide, Geochimica et Cosmochimica Acta, 55, 3403-3405, doi:10.1016/0016-7037(91)90498-T, 1991.
  20. Chekushin, V. A., Bogatyrev, I. V., Caritat, P. de, Niskavaara, H., and Reimann, C.: Annual atmospheric deposition of 16 elements in eight catchments of the central Barents region, Science of The Total Environment, 220, 95-114, doi:10.1016/S0048-9697(98)00247-2, 1998.
  21. Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991-2007, doi:10.5194/gmd-8-1991- 2015, 2015.
  22. Davidson, G. R.: The stable isotopic composition and measurement of carbon in soil CO2, Geochimica et Cosmochimica Acta, 59, 2485-2489, doi:10.1016/0016-7037(95)00143-3, 1995.
  23. Deines, P., Langmuir, D., and Harmon, R. S.: Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters, Geochimica et Cosmochimica Acta, 38, 1147-1164, doi:10.1016/0016-7037(74)90010-6, 1974.
  24. Didan, K., Munoz, A. B., Solano, R., and Huete, A.: MOD13Q1 v006: MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid, Land Processes Distributed Active Archive Center (LP DAAC), https://lpdaac.usgs.gov/, 2015.
  25. Dingman, S. L.: Hydrology of the Glenn Creek watershed, Tanana River Basin, central Alaska: Res. Rep. 297, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, USA, 1971.
  26. Drake, T. W., Tank, S. E., Zhulidov, A. V., Holmes, R. M., Gurtovaya, T., and Spencer, R. G. M.: Increasing Alkalinity Export from Large Russian Arctic Rivers, Environmental science & technology, 52, 8302-8308, doi:10.1021/acs.est.8b01051, 2018. ESRI: ArcGIS pro, ESRI, Redlands, USA, 2022.
  27. Frey, K. E. and McClelland, J. W.: Impacts of permafrost degradation on arctic river biogeochemistry, Hydrol. Process., 23, 169-182, doi:10.1002/hyp.7196, 2009.
  28. Fritz, P., Drimmie, R. J., Frape, S. K., and O'Shea, K.: The isotopic composition of precipitation and groundwater in Canada, IAEA, International Atomic Energy Agency (IAEA), 1987.
  29. Gaillardet, J., Dupré, B., Louvat, P., and Allègre, C. J.: Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chemical Geology, 159, 3-30, doi:10.1016/S0009-2541(99)00031-5, 1999. https://doi.org/10.5194/bg-2022-205
  30. Preprint. Discussion started: 2 November 2022
  31. Garrels, R. M. and Berner, R. A.: The Global Carbonate-Silicate Sedimentary System -Some Feedback Relations, in: Biomineralization and Biological Metal Accumulation, Westbroek, P., Jong, E. W. de (Eds.), Springer Netherlands, Dordrecht, 73-87, 1983.
  32. Gislason, S. R., Oelkers, E. H., Eiriksdottir, E. S., Kardjilov, M. I., Gisladottir, G., Sigfusson, B., Snorrason, A., Elefsen, S., Hardardottir, J., Torssander, P., and Oskarsson, N.: Direct evidence of the feedback between climate and weathering, Earth and Planetary Science Letters, 277, 213-222, doi:10.1016/j.epsl.2008.10.018, 2009.
  33. Goll, D. S., Moosdorf, N., Hartmann, J., and Brovkin, V.: Climate-driven changes in chemical weathering and associated phosphorus release since 1850: Implications for the land carbon balance, Geophys. Res. Lett., 41, 3553-3558, doi:10.1002/2014GL059471, 2014.
  34. Hartmann, J.: Bicarbonate-fluxes and CO2-consumption by chemical weathering on the Japanese Archipelago - Application of a multi-lithological model framework, Chemical Geology, 265, 237-271, doi:10.1016/j.chemgeo.2009.03.024, 2009.
  35. Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S., and Köhler, P.: Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions?, Global and Planetary Change, 69, 185-194, doi:10.1016/j.gloplacha.2009.07.007, 2009.
  36. Hartmann, J. and Moosdorf, N.: The new global lithological map database GLiM: A representation of rock properties at the Earth surface, Geochem. Geophys. Geosyst., 13, 119, doi:10.1029/2012GC004370, 2012.
  37. Hill, T. and Neal, C.: Spatial and temporal variation in pH, alkalinity and conductivity in surface runoff and groundwater for the Upper River Severn catchment, Hydrol. Earth Syst. Sci., 1, 697-715, doi:10.5194/hess-1-697-1997, 1997.
  38. Hoefs, J.: Contribution to the isotopic geochemistry of carbon in magmatic rocks, Goettingen Univ., Goettingen, Ger, Germany, 1973.
  39. Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., and Ferreira, L.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of Environment, 83, 195-213, doi:10.1016/S0034- 4257(02)00096-2, 2002. International Atomic Energy Agency: Global Network of Isotopes in Precipitation. The GNIP Database, https://nucleus.iaea.org/wiser, 2020.
  40. Jacobson, A. D., Blum, J. D., Chamberlain, C., Craw, D., and Koons, P. O.: Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps, Geochimica et Cosmochimica Acta, 67, 29-46, doi:10.1016/S0016- 7037(02)01053-0, 2003.
  41. Jacobson, A. D., Blum, J. D., Chamberlain, C., Poage, M. A., and Sloan, V. F.: Ca/Sr and Sr isotope systematics of a Himalayan glacial chronosequence: Carbonate versus silicate weathering rates as a function of landscape surface age, Geochimica et Cosmochimica Acta, 66, 13-27, doi:10.1016/S0016-7037(01)00755-4, 2002.
  42. Jacobson, A. D., Grace Andrews, M., Lehn, G. O., and Holmden, C.: Silicate versus carbonate weathering in Iceland: New insights from Ca isotopes, Earth and Planetary Science Letters, 416, 132-142, doi:10.1016/j.epsl.2015.01.030, 2015. https://doi.org/10.5194/bg-2022-205
  43. Preprint. Discussion started: 2 November 2022
  44. Jones, J. B. and Mulholland, P. J.: Influence of drainage basin topography and elevation on carbon dioxide and methane supersaturation of stream water, Biogeochemistry, 40, 57-72, doi:10.1023/A:1005914121280, 1998.
  45. Kempe, S.: Long-term records of CO2 pressure fluctuations in fresh waters, Mitt. Geol-Paläont. Inst. Univ. Hamburg; SCOPE/UNEP Sonderband, 52, 91-332, 1982.
  46. Kjellman, S. E., Axelsson, P. E., Etzelmüller, B., Westermann, S., and Sannel, A. B. K.: Holocene development of subarctic permafrost peatlands in Finnmark, northern Norway, The Holocene, 28, 1855-1869, doi:10.1177/0959683618798126, 2018.
  47. Land, L. S.: The isotopic and trace element geochemistry of dolomite: the state of the art, in: Concepts and Models of Dolomitization, Zenger, D. H., Dunham, J. B., Ethington, R. L. (Eds.), SEPM (Society for Sedimentary Geology), 87- 110, 1980.
  48. Lasaga, A. C.: Chemical kinetics of water-rock interactions, J. Geophys. Res., 89, 4009-4025, doi:10.1029/JB089iB06p04009, 1984.
  49. Lehn, G. O., Jacobson, A. D., Douglas, T. A., McClelland, J. W., Barker, A. J., and Khosh, M. S.: Constraining seasonal active layer dynamics and chemical weathering reactions occurring in North Slope Alaskan watersheds with major ion and isotope (δ34SSO4, δ13CDIC, 87Sr/86Sr, δ44/40Ca, and δ44/42Ca) measurements, Geochimica et Cosmochimica Acta, 217, 399-420, doi:10.1016/j.gca.2017.07.042, 2017.
  50. Li, S., Xia, X., Tan, X., and Zhang, Q.: Effects of catchment and riparian landscape setting on water chemistry and seasonal evolution of water quality in the upper Han River basin, China, PloS one, 8, e53163, doi:10.1371/journal.pone.0053163, 2013.
  51. Li, S.-L., Calmels, D., Han, G., Gaillardet, J., and Liu, C.-Q.: Sulfuric acid as an agent of carbonate weathering constrained by δ13CDIC: Examples from Southwest China, Earth and Planetary Science Letters, 270, 189-199, doi:10.1016/j.epsl.2008.02.039, 2008.
  52. Li, S.-L., Liu, C.-Q., Li, J., Lang, Y.-C., Ding, H., and Li, L.: Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints, Chemical Geology, 277, 301-309, doi:10.1016/j.chemgeo.2010.08.013, 2010.
  53. Liu, J. and Han, G.: Effects of chemical weathering and CO2 outgassing on δ13CDIC signals in a karst watershed, Journal of Hydrology, 589, 125192, doi:10.1016/j.jhydrol.2020.125192, 2020.
  54. Liu, Z., Macpherson, G. L., Groves, C., Martin, J. B., Yuan, D., and Zeng, S.: Large and active CO2 uptake by coupled carbonate weathering, Earth-Science Reviews, 182, 42-49, doi:10.1016/j.earscirev.2018.05.007, 2018.
  55. Macpherson, G. L., Sullivan, P. L., Stotler, R. L., Norwood, B. S., Chudaev, O., Kharaka, Y., Harmon, R., Millot, R., and Shouakar-Stash, O.: Increasing groundwater CO 2 in a mid-continent tallgrass prairie: Controlling factors, E3S Web Conf., 98, 6008, doi:10.1051/e3sconf/20199806008, 2019. https://doi.org/10.5194/bg-2022-205
  56. Preprint. Discussion started: 2 November 2022
  57. Marx, A., Conrad, M., Aizinger, V., Prechtel, A., van Geldern, R., and Barth, J. A. C.: Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach, Biogeosciences, 15, 3093-3106, doi:10.5194/bg-15-3093-2018, 2018.
  58. Marx, A., Dusek, J., Jankovec, J., Sanda, M., Vogel, T., van Geldern, R., Hartmann, J., and Barth, J. A. C.: A review of CO 2 and associated carbon dynamics in headwater streams: A global perspective, Rev. Geophys., 55, 560-585, doi:10.1002/2016RG000547, 2017a.
  59. Marx, A., Hintze, S., Sanda, M., Jankovec, J., Oulehle, F., Dusek, J., Vitvar, T., Vogel, T., van Geldern, R., and Barth, J. A. C.: Acid rain footprint three decades after peak deposition: Long-term recovery from pollutant sulphate in the Uhlirska catchment (Czech Republic), The Science of the total environment, 598, 1037-1049, doi:10.1016/j.scitotenv.2017.04.109, 2017b.
  60. McGivney, E., Gustafsson, J. P., Belyazid, S., Zetterberg, T., and Löfgren, S.: Assessing the impact of acid rain and forest harvest intensity with the HD-MINTEQ model -soil chemistry of three Swedish conifer sites from 1880 to 2080, SOIL, 5, 63-77, doi:10.5194/soil-5-63-2019, 2019.
  61. McGlynn, B. L. and McDonnell, J. J.: Quantifying the relative contributions of riparian and hillslope zones to catchment runoff, Water Resour. Res., 39, 211, doi:10.1029/2003WR002091, 2003a.
  62. McGlynn, B. L. and McDonnell, J. J.: Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics, Water Resour. Res., 39, 251, doi:10.1029/2002WR001525, 2003b.
  63. McGlynn, B. L. and Seibert, J.: Distributed assessment of contributing area and riparian buffering along stream networks, Water Resour. Res., 39, 331, doi:10.1029/2002WR001521, 2003.
  64. McGuire, K. J. and McDonnell, J. J.: Hydrological connectivity of hillslopes and streams: Characteristic time scales and nonlinearities, Water Resour. Res., 46, 400, doi:10.1029/2010WR009341, 2010.
  65. McNamara, J. P., Kane, D. L., and Hinzman, L. D.: Hydrograph separations in an arctic watershed using mixing model and graphical techniques, Water Resour. Res., 33, 1707-1719, doi:10.1029/97WR01033, 1997.
  66. Meybeck, M.: Composition chimique des ruisseaux non pollués en France. Chemical composition of headwater streams in France, sgeol, 39, 3-77, doi:10.3406/sgeol.1986.1719, 1986.
  67. Meybeck, M.: Global chemical weathering of surficial rocks estimated from river dissolved loads, American Journal of Science, 287, 401-428, doi:10.2475/ajs.287.5.401, 1987.
  68. Meyboom, P.: Groundwater Studies in the Assiboine River Drainage Basin. Part II: Hydrolofic Characteristics of Phreatophytic Vegetation in South-Central Saskatchewan, Geological Survey of Canada, Ottawa, Canada, 1967.
  69. Michaelis, J.: Carbonate rock dissolution under intermediate system conditions, in: Progress in Hydrogeochemistry: Organics -Carbonate Systems -Silicate Systems -Microbiology -Models, Mattheß, G., Frimmel, F., Hirsch, P., Schulz, H. D., Usdowski, E. (Eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 167-174, 1992. https://doi.org/10.5194/bg-2022-205
  70. Preprint. Discussion started: 2 November 2022
  71. Michaelis, J., Usdowski, E., and Menschel, G.: Partitioning of 13 C and 12 C on the degassing of CO 2 and the precipitation of calcite; Rayleigh-type fractionation and a kinetic model, American Journal of Science, 285, 318-327, doi:10.2475/ajs.285.4.318, 1985.
  72. Millero, F. J.: The thermodynamics of the carbonate system in seawater, Geochimica et Cosmochimica Acta, 43, 1651-1661, doi:10.1016/0016-7037(79)90184-4, 1979.
  73. Millot, R., Gaillardet, J., Dupré, B., and Allègre, C. J.: The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield, Earth and Planetary Science Letters, 196, 83-98, doi:10.1016/S0012-821X(01)00599-4, 2002.
  74. Moore, J., Jacobson, A. D., Holmden, C., and Craw, D.: Tracking the relationship between mountain uplift, silicate weathering, and long-term CO2 consumption with Ca isotopes: Southern Alps, New Zealand, Chemical Geology, 341, 110-127, doi:10.1016/j.chemgeo.2013.01.005, 2013.
  75. Moosdorf, N., Hartmann, J., and Lauerwald, R.: Changes in dissolved silica mobilization into river systems draining North America until the period 2081-2100, Journal of Geochemical Exploration, 110, 31-39, doi:10.1016/j.gexplo.2010.09.001, 2011.
  76. Myrabø, S.: Temporal and spatial scale of response area and groundwater variation in Till, Hydrol. Process., 11, 1861-1880, doi:10.1002/(SICI)1099-1085(199711)11:14%3C1861:AID-HYP535%3E3.0.CO;2-P, 1997. NGU: Berggrunn Data N250, Geological Survey of Norway, https://www.ngu.no/en/topic/datasets, 2022.
  77. Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H., Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov, A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda, S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., Yamkhin, J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale, Earth-Science Reviews, 193, 299-316, doi:10.1016/j.earscirev.2019.04.023, 2019.
  78. O'Leary, M. H.: Carbon Isotopes in Photosynthesis, BioScience, 38, 328-336, doi:10.2307/1310735, 1988.
  79. Oliva, P., Dupré, B., Martin, F., and Viers, J.: The role of trace minerals in chemical weathering in a high-elevation granitic watershed (Estibère, France): Chemical and mineralogical evidence, Geochimica et Cosmochimica Acta, 68, 2223- 2243, doi:10.1016/j.gca.2003.10.043, 2004.
  80. Oliver, L., Harris, N., Bickle, M., Chapman, H., Dise, N., and Horstwood, M.: Silicate weathering rates decoupled from the 87Sr/86Sr ratio of the dissolved load during Himalayan erosion, Chemical Geology, 201, 119-139, doi:10.1016/S0009- 2541(03)00236-5, 2003.
  81. O'Nions, R. K., Morton, R. D., and Batey, R.: Geological investigations in the Bamble sector of the Fennoscandian Shield South Norway.: I. The geology of eastern Bamble., Universitetsforlaget, Oslo, 1970.
  82. Petrone, K. C., Hinzman, L. D., Shibata, H., Jones, J. B., and Boone, R. D.: The influence of fire and permafrost on sub- arctic stream chemistry during storms, Hydrol. Process., 21, 423-434, doi:10.1002/hyp.6247, 2007.
  83. Pierrot, D. E., Wallace, D., and Lewis, E.: Carbon Dioxide Information Analysis Center, 2011. https://doi.org/10.5194/bg-2022-205
  84. Preprint. Discussion started: 2 November 2022
  85. Polsenaere, P. and Abril, G.: Modelling CO2 degassing from small acidic rivers using water pCO2, DIC and δ13C-DIC data, Geochimica et Cosmochimica Acta, 91, 220-239, doi:10.1016/j.gca.2012.05.030, 2012.
  86. Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, M., JR., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, V1, Harvard Dataverse, 2018.
  87. Purkamo, L., Ahn, C. M. E. von, Jilbert, T., Muniruzzaman, M., Bange, H. W., Jenner, A.-K., Böttcher, M. E., and Virtasalo, J. J.: Impact of submarine groundwater discharge on biogeochemistry and microbial communities in pockmarks, Geochimica et Cosmochimica Acta, 334, 14-44, doi:10.1016/j.gca.2022.06.040, 2022.
  88. QGIS.org: QGIS Geographic Information System, QGIS Association, http://www.qgis.org, 2022.
  89. Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe since 1979, Commun Earth Environ, 3, doi:10.1038/s43247-022-00498-3, 2022.
  90. Raymond, P. A. and Hamilton, S. K.: Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans, Limnol Oceanogr Lett, 3, 143-155, doi:10.1002/lol2.10069, 2018.
  91. Raymond, P. A., Oh, N.-H., Turner, R. E., and Broussard, W.: Anthropogenically enhanced fluxes of water and carbon from the Mississippi River, Nature, 451, 449-452, doi:10.1038/nature06505, 2008.
  92. Riley, S. J., DeGloria, S. D., and and Elliot, R.: A terrain ruggedness index that quantifies topographic heterogeneity, Intermountain Journal of Sciences, 5, 23-27, 1999.
  93. Rouault, E., Warmerdam, F., Schwehr, K., Kiselev, A., Butler, H., Łoskot, M., Szekeres, T., Tourigny, E., Landa, M., Miara, I., Elliston, B., Kumar, C., Plesea, L., Morissette, D., Jolma, A., and Dawson, N.: GDAL (v3.4.2), Zenodo, https://doi.org/10.5281/zenodo.6352176, 2022.
  94. Sandström, B. and Tullborg, E.-L.: Episodic fluid migration in the Fennoscandian Shield recorded by stable isotopes, rare earth elements and fluid inclusions in fracture minerals at Forsmark, Sweden, Chemical Geology, 266, 126-142, doi:10.1016/j.chemgeo.2009.04.019, 2009.
  95. Schaefer, K. W. and Usdowski, E.: Models for the dissolution of carbonate rocks and the carbon-13/carbon-12 evolution of carbonate groundwaters, Zeitschrift fuer Wasser-und Abwasser-Forschung, 20, 69-81, 1987.
  96. Schaefer, K. W. and Usdowski, E.: Application of stable carbon and sulfur isotope models to the development of ground water in a limestone-dolomite-anhydrite-gypsum area, in: Progress in Hydrogeochemistry: Organics -Carbonate Systems -Silicate Systems -Microbiology -Models, Mattheß, G., Frimmel, F., Hirsch, P., Schulz, H. D., Usdowski, E. (Eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 157-163, 1992.
  97. Seibert, J., Grabs, T., Köhler, S., Laudon, H., Winterdahl, M., and Bishop, K.: Linking soil-and stream-water chemistry based on a Riparian Flow-Concentration Integration Model, Hydrol. Earth Syst. Sci., 13, 2287-2297, doi:10.5194/hess- 13-2287-2009, 2009. https://doi.org/10.5194/bg-2022-205
  98. Preprint. Discussion started: 2 November 2022
  99. Seklima: Observations and weather statistics, Norsk Klimaservicesenter, https://seklima.met.no/observations/, 2020.
  100. Shadwick, E. H., Thomas, H., Gratton, Y., Leong, D., Moore, S. A., Papakyriakou, T., and Prowe, A.: Export of Pacific carbon through the Arctic Archipelago to the North Atlantic, Continental Shelf Research, 31, 806-816, doi:10.1016/j.csr.2011.01.014, 2011.
  101. Shin, W. J., Chung, G. S., Lee, D., and Lee, K. S.: Dissolved inorganic carbon export from carbonate and silicate catchments estimated from carbonate chemistry and δ13CDIC, Hydrol. Earth Syst. Sci., 15, 2551-2560, doi:10.5194/hess-15-2551-2011, 2011.
  102. Sollid, J. L., Andersen, S., Hamre, N., Kjeldsen, O., Salvigsen, O., Sturød, S., Tveitå, T., and Wilhelmsen, A.: Deglaciation of Finnmark, North Norway, Norsk Geografisk Tidsskrift -Norwegian Journal of Geography, 27, 233-325, doi:10.1080/00291951.1973.9728306, 1973.
  103. Stallard, R. F. and Edmond, J. M.: Geochemistry of the Amazon: 3. Weathering chemistry and limits to dissolved inputs, J. Geophys. Res., 92, 8293, doi:10.1029/JC092iC08p08293, 1987.
  104. Stone, L. E., Fang, X., Haynes, K. M., Helbig, M., Pomeroy, J. W., Sonnentag, O., and Quinton, W. L.: Modelling the effects of permafrost loss on discharge from a wetland-dominated, discontinuous permafrost basin, Hydrol. Process., 33, 2607-2626, doi:10.1002/hyp.13546, 2019.
  105. Striegl, R. G., Aiken, G. R., Dornblaser, M. M., Raymond, P. A., and Wickland, K. P.: A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn, Geophys. Res. Lett., 32, 567, doi:10.1029/2005GL024413, 2005.
  106. Stroeven, A. P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin, O., Goodfellow, B. W., Harbor, J. M., Jansen, J. D., Olsen, L., Caffee, M. W., Fink, D., Lundqvist, J., Rosqvist, G. C., Strömberg, B., and Jansson, K. N.: Deglaciation of Fennoscandia, Quaternary Science Reviews, 147, 91-121, doi:10.1016/j.quascirev.2015.09.016, 2016.
  107. Stumm, W. and Morgan, J. J.: Aquatic chemistry an introduction chemical equilibria in natural water, 2nd ed., A Wiley - Interscience Publication, A Wiley-Interscience Publication, New York, 780 pp., 1981.
  108. Tank, S. E., Frey, K. E., Striegl, R. G., Raymond, P. A., Holmes, R. M., McClelland, J. W., and Peterson, B. J.: Landscape- level controls on dissolved carbon flux from diverse catchments of the circumboreal, Global Biogeochem. Cycles, 26, 323, doi:10.1029/2012GB004299, 2012.
  109. Tanneberger, F., Tegetmeyer, C., Busse, S., Barthelmes, A., and and 55 others: The peatland map of Europe, Mires and Peat, 19, 1-17, doi:10.19189/MaP.2016.OMB.264, 2017.
  110. Trolier, M., White, J. W. C., Tans, P. P., Masarie, K. A., and Gemery, P. A.: Monitoring the isotopic composition of atmospheric CO 2: Measurements from the NOAA Global Air Sampling Network, J. Geophys. Res., 101, 25897-25916, doi:10.1029/96JD02363, 1996.
  111. Vidon, P.: Towards a better understanding of riparian zone water table response to precipitation: Surface water infiltration, hillslope contribution or pressure wave processes?, Hydrol. Process., 26, 3207-3215, doi:10.1002/hyp.8258, 2012. https://doi.org/10.5194/bg-2022-205
  112. Preprint. Discussion started: 2 November 2022
  113. Walker, J. C. G., Hays, P. B., and Kasting, J. F.: A negative feedback mechanism for the long-term stabilization of Earth's surface temperature, J. Geophys. Res., 86, 9776, doi:10.1029/JC086iC10p09776, 1981.
  114. Walvoord, M. A. and Striegl, R. G.: Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen, Geophys. Res. Lett., 34, L19401, doi:10.1029/2007GL030216, 2007.
  115. Warner, D. L., Bond-Lamberty, B., Jian, J., Stell, E., and Vargas, R.: Spatial Predictions and Associated Uncertainty of Annual Soil Respiration at the Global Scale, Global Biogeochem. Cycles, 33, 1733-1745, doi:10.1029/2019GB006264, 2019.
  116. Watts, J. D., Natali, S. M., Minions, C., Risk, D., Arndt, K., Zona, D., Euskirchen, E. S., Rocha, A. V., Sonnentag, O., Helbig, M., Kalhori, A., Oechel, W., Ikawa, H., Ueyama, M., Suzuki, R., Kobayashi, H., Celis, G., Schuur, E. A. G., Humphreys, E., Kim, Y., Lee, B.-Y., Goetz, S., Madani, N., Schiferl, L. D., Commane, R., Kimball, J. S., Liu, Z., Torn, M. S., Potter, S., Wang, J. A., Jorgenson, M. T., Xiao, J., Li, X., and Edgar, C.: Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada, Environ. Res. Lett., 16, 84051, doi:10.1088/1748-9326/ac1222, 2021.
  117. White, A. F., Bullen, T. D., Vivit, D. V., Schulz, M. S., and Clow, D. W.: The role of disseminated calcite in the chemical weathering of granitoid rocks, Geochimica et Cosmochimica Acta, 63, 1939-1953, doi:10.1016/S0016-7037(99)00082- 4, 1999.
  118. White, A. F., Schulz, M. S., Lowenstern, J. B., Vivit, D. V., and Bullen, T. D.: The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis, Geochimica et Cosmochimica Acta, 69, 1455-1471, doi:10.1016/j.gca.2004.09.012, 2005.
  119. Winde, V., Böttcher, M. E., Escher, P., Böning, P., Beck, M., Liebezeit, G., and Schneider, B.: Tidal and spatial variations of DI13C and aquatic chemistry in a temperate tidal basin during winter time, Journal of Marine Systems, 129, 396-404, doi:10.1016/j.jmarsys.2013.08.005, 2014.
  120. Yuanrong, S., Ruihong, Y., Mingyang, T., Xiankun, Y., Lishan, R., Haizhu, H., Zhuangzhuang, Z., and Xixi, L.: Major ion chemistry in the headwater region of the Yellow River: Impact of land covers, Environ Earth Sci, 80, 2637, doi:10.1007/s12665-021-09692-6, 2021.
  121. Zeebe, R. E. and Westbroek, P.: A simple model for the CaCO 3 saturation state of the ocean: The "Strangelove," the "Neritan," and the "Cretan" Ocean, Geochem. Geophys. Geosyst., 4, doi:10.1029/2003GC000538, 2003.
  122. Zeng, S., Kaufmann, G., and Liu, Z.: Natural and Anthropogenic Driving Forces of Carbonate Weathering and the Related Carbon Sink Flux: A Model Comparison Study at Global Scale, Global Biogeochem. Cycles, 36, 46, doi:10.1029/2021GB007096, 2022.
  123. Zeng, S., Liu, Z., and Kaufmann, G.: Sensitivity of the global carbonate weathering carbon-sink flux to climate and land-use changes, Nature communications, 10, 5749, doi:10.1038/s41467-019-13772-4, 2019.
  124. Zhang, J., Quay, P. D., and Wilbur, D. O.: Carbon isotope fractionation during gas-water exchange and dissolution of CO2, Geochimica et Cosmochimica Acta, 59, 107-114, doi:10.1016/0016-7037(95)91550-D, 1995. https://doi.org/10.5194/bg-2022-205
  125. Preprint. Discussion started: 2 November 2022
  126. Zolkos, S., Tank, S. E., Striegl, R. G., Kokelj, S. V., Kokoszka, J., Estop-Aragonés, C., and Olefeldt, D.: Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada, Biogeosciences, 17, 5163-5182, doi:10.5194/bg-17-5163-2020, 2020. https://doi.org/10.5194/bg-2022-205
  127. Preprint. Discussion started: 2 November 2022