Precise Integration of Polymeric Sensing Functional Materials within 3D Printed Microfluidic Devices (original) (raw)
Related papers
Integration of functional materials and surface modification for polymeric microfluidic systems
2013
The opportunity for the commercialization of microfluidic systems has surged over the recent decade, primarily for medical and the life science applications. This positive development has been spurred by an increasing number of integrated, highly functional lab-on-a-chip technologies from the research community. Toward commercialization, there is a dire need for economic manufacture which involves optimized cost for materials and structuring on the front-end as well as for a range of back-end processing steps such as surface modification, integration of functional elements, assembly and packaging. Front-end processing can readily resort to very well established polymer mass fabrication schemes, e.g. injection molding. Also assembly and packaging can often be adopted from commercially available processes. In this review, we survey the back-end processes of hybrid material integration and surface modification which often need to be tailored to the specifics of miniaturized polymeric microfluidic systems. On the one hand, the accurate control of these back-end processes proves to be the key to the technical function of the system and thus the value creation. On the other hand, the integration of functional materials constitutes a major cost factor.
Prototyping and Production of Polymeric Microfluidic Chip
Advances in Microfluidics and Nanofluids, 2021
Microfluidic chips have found many advanced applications in the areas of life science, analytical chemistry, agro-food analysis, and environmental detection. This chapter focuses on investigating the commonly used manufacturing technologies and process chain for the prototyping and mass production of microfluidic chips. The rapid prototyping technologies comprising of PDMS casting, micro machining, and 3D-printing are firstly detailed with some important research findings. Scaling up the production process chain for microfluidic chips are discussed and summarized with the perspectives of tooling technology, replication, and bonding technologies, where the primary working mechanism, technical advantages and limitations of each process method are presented. Finally, conclusions and future perspectives are given. Overall, this chapter demonstrates how to select the processing materials and methods to meet practical requirements for microfluidic chip batch production. It can provide sig...
Simple and low-cost production of hybrid 3D-printed microfluidic devices
Biomicrofluidics, 2019
The use of three-dimensional (3D) printing for the fabrication of microfluidic chips has attracted considerable attention among researchers. This low-cost fabrication method allows for rapid prototyping and the creation of complex structures; however, these devices lack optical transparency, which greatly hinders the characterization and quantification of experiment results. To address this problem, integrating a transparent substrate with a 3D-printed chip is an effective approach. In this study, we present a solvent bonding method of poly(methyl methacrylate) (PMMA) and acrylonitrile butadiene styrene (ABS) thermoplastic materials for the creation of optically detectable 3D-printed microfluidic devices. To achieve an excellent bonding between PMMA and ABS substrates, we used spray coating as a method for the distribution of ethanol solution followed by UV exposure and post-annealing step to improve the bonding strength. We fabricated a microfluidic chip with S-microchannel to characterize the bonding protocol, and other two application-oriented microfluidic chips, including a 3D split-and-recombine-based passive micromixer, and an integrated microchip for the mixing of two streams of liquid prior to the formation of double-emulsion droplets, to evaluate the efficacy of the proposed scheme. As a result, at least eight bars of the bonding strength between PMMA/ABS substrates was achieved, and the ability of producing optically detectable 3D-printed microfluidic devices based on this bonding method was confirmed.
Sensors and Actuators B: Chemical, 2017
Microfluidic devices based on polydimethylsiloxane shown a plethora of experimental possibilities due to good transparency, flexibility and ability to adhere reversibly and irreversibly to distinct materials. Though PDMS is a milestone in microfluidic developments, its cost and handling directed the field to search for new options. 3D printing technology nowadays starts a revolution offering materials and possibilities that can contribute positively to current methodologies. Here we explored the fused deposition modeling 3D printing technique to obtain integrated, transparent and sealed microchannels made with polylactic acid, a cheap alternative material to set up microfluidic systems. Using a home-made 3D printer, devices could be assembled in a simplified process, enabling the integration of different materials such as paper, glass, wire and polymers within the microchannel. To demonstrate the efficacy of this approach, a 3D-printed electronic tongue sensor was built, enabling the distinction of basic tastes below the human threshold.
In this article, we presented the development of fully modular microfluidic flow cells for an electrochemical using 3D printing. The proposed devices are potential for electrochemical measurements using a small sample volume on a fully portable, reusable, simply fabricated, low-cost, PDMS-free, and leakage-free flow cell. This concept offers a simple, controllable sample over the conventional electrochemical platform with a three-electrode system, which requires a considerable volume of samples or a non-controllable drop cast method for sequential protocols. We demonstrated an easy alignment and lock, namely, click-and-fit modular microfluidics, for quick and easy assembly and disassembly of flow cell modules using magnetic force instead of the screw, polymer glue, or resin. Two microfluidic modules were presented using tube- and syringe-flow cells (TFC and SFC) to integrate the screen-printed carbon electrodes (SPCE) in the electrochemical sensor. The proof-of-concept of the integr...
Sensors and Actuators B: Chemical, 2021
In order to facilitate the implementation of microfluidic technology for rapid point-of-care analysis, there is a demand for self-powered microfluidics. The modular architecture of degas driven plug-and-play polymeric micropumps and microfluidic cartridges arose during last decade as a powerful strategy for autonomous flow control. So far, reported polymeric micropumps were made of poly-dimethyl siloxane and were fabricated by casting. In this work, we showed that the advantages of three-dimensional printing can greatly benefit the development of modular micropumps. In addition, micropumps were created with a geometry that cannot be manufactured with conventional techniques, making it easily assemblable to microfluidic devices. Four types of polymeric resins and three printing methods were used to create a set of functional micropumps. It was shown that the material and the design of the printed micropumps were related to their power, making them tuneable and programmable. Finally, as proof of concept, a self-powered colorimetric test for the detection of starch was demonstrated. Three-dimensional printed micropumps emerge as an innovative element in the field of selfpowered microfluidics, which may be the key to develop integrated microsystems for several applications such as in rapid point-of-care analysis.
Fabrication of Chemofluidic Integrated Circuits by Multi-Material Printing
Micromachines
Photolithographic patterning of components and integrated circuits based on active polymers for microfluidics is challenging and not always efficient on a laboratory scale using the traditional mask-based fabrication procedures. Here, we present an alternative manufacturing process based on multi-material 3D printing that can be used to print various active polymers in microfluidic structures that act as microvalves on large-area substrates efficiently in terms of processing time and consumption of active materials with a single machine. Based on the examples of two chemofluidic valve types, hydrogel-based closing valves and PEG-based opening valves, the respective printing procedures, essential influencing variables and special features are discussed, and the components are characterized with regard to their properties and tolerances. The functionality of the concept is demonstrated by a specific chemofluidic chip which automates an analysis procedure typical of clinical chemistry ...
Manufacturing of Microfluidic Sensors Utilizing 3D Printing Technologies: A Production System
Journal of Nanomaterials
3D integrated microfluid devices are a group of engineered microelectromechanical systems (MEMS) whereby the feature size and operating range of the components are on a microscale. These devices or systems have the ability to detect, control, activate, and create macroscale effects. On this basis, microfluidic chips are systems that enable microliters and smaller volumes of fluids to be controlled and moved within microscale-sized (one-millionth of a meter) channels. While this small scale can be compared to microfluid chips of larger applications, such as pipes or plumbing practices, their small size is commonly useful in controlling and monitoring the flow of fluid. Through such applications, microfluidic chip technology has become a popular tool for analysis in biochemistry and bioengineering with their most recent uses for artificial organ production. For this purpose, microfluidic chips can be instantly controlled by the human body, such as pulse, blood flow, blood pressure, an...
Smart Sensors, Actuators, and MEMS, 2003
In this paper, a concept for a monolithically integrated chemical lab on microchip is presented. It contains an ASIC (Application Specific Integrated Circuit), an interface to the polymer based microfluidic layer and a Pyrex glass cap. The top metal layer of the ASIC is etched off and replaced by a double layer metallization, more suitable to microfluidic and electrophoresis systems. The metallization consists of an approximately 50 nm gold layer and a 10 nm chromium layer, acting as adhesion promoter. A necessary prerequisite is a planarized ASIC topography. SU-8 is used to serve as microfluidic structure because of its excellent aspect ratio. This polymer layer contains reservoirs, channels, mixers and electrokinetic micro pumps. The typical channel cross section is 10 µm • 10 µm. First experimental results on a microfluidic pump, consisting of pairs of interdigitated electrodes on the bottom of the channel and without any moving parts show a flow of up to 50 µm per second for low AC-voltages in the range of 5 V for aqueous fluids. The microfluidic system is irreversibly sealed with a 150 µm thick Pyrex glass plate bonded to the SU-8-layer, supported by oxygen plasma. Due to capillary forces and surfaces properties of the walls the system is self-priming. The technologies for the fabrication of the microfluidic system and the preparation of the interface between the lab layer and the ASIC are presented.
Hybrid microfluidic systems: combining a polymer microfluidic toolbox with biosensors
Microfluidics, BioMEMS, and Medical Microsystems V, 2007
In this paper we present polymer based microfluidic chips which contain functional elements (electrodes, biosensors) made out of a different material (metals, silicon, organic semiconductors). These hybrid microfluidic devices allow the integration of additional functionality other than the simple manipulation of liquids in the chip and have been developed as a reaction to the increasing requirement for functional integration in microfluidics.