The Investigation of Fiber Reinforcement Self-Compacting Concrete and Fiber Reinforcement Concrete (original) (raw)

Enhancing the Strength Properties of Self-Compacting Concrete with Fiber Reinforcement

Regular Issue, 2019

Self-compacting concrete is one that is flow able by its own. The SCC is suitable for placing in dense reinforcement structures. It is a new generation performance concrete known for its outstanding deformity and high resistance to bleeding. The concrete is frail material which is comparatively tough in compression but fragile in tension. The tensile strength of concrete is improved by addition of fibers in the concrete mix. The addition of such fibers has negative consequence on the workability of concrete. Various types of fibers are used in concrete to provide the higher flexural strength and better tensile strength. In this research steel fibers are used to provide a better strength as compared with normal reinforced concrete. Steel fiber in SCC significantly improves its flexural strength, improved tensile properties, reduce cracking and improve durability. In this research the investigation of steel fiber in SCC to enhance the strength properties of SCC. The objective of the s...

A STUDY ON STRENGTH CHARACTER OF SELF COMPACTING CONCRETE WITH FIBRE REINFORCED CONCRETE

A self-compacting concrete (SCC) is the one that can be placed in the form and can go through obstructions by its own weight and without the need of vibration .its first development in Japan in 1988, SCC has gained wider acceptance in Japan, Europe and USA due to its inherent distinct advantages. The major advantage of this method is that SCC technology offers the opportunity to minimize or eliminate concrete placement problems in difficult conditions. It avoids having to repeat the same kind of quality control test on concrete, which consumes both time and labor. Construction and placing becomes faster& easier. It eliminates the need for vibration & reducing the noise pollution. It improves the filling capacity of highly congested structural members. SCC provides better quality especially in the members having reinforcement congestion or decreasing the permeability and improving durability of concrete. The primary aim of this study is to explore the feasibility of using SCC by examining fresh and hardened properties by introducing glass (0.1%) and steel (1.5%) fibers of M40 Grade SCC and comparing the same with M40 Grade Plain SCC. Also, to study the fresh and hardened properties of M80 Grade SCC with varying Packing Factors i.e. 1.12,1.14,1.16,1.18 and comparing the same with M80 Grade conventional concrete When the fiber reinforcement is in the form of short discrete fibers, they act effectively as rigid inclusions in the concrete matrix. Physically, they have thus the same order of magnitude as aggregate inclusions; steel fiber reinforcement cannot therefore be regarded as a direct replacement of longitudinal reinforcement in reinforced and prestressed structural members. However, because of the inherent material properties of fiber concrete, the presence of fibers in the body of the concrete or the provision of a tensile skin of fiber concrete can be expected to improve the resistance of conventionally reinforced structural members to cracking, deflection and other serviceability conditions. Compressive strength of concrete is measured by testing standard cubes (150mm x 150mm x 150mm) at the age of 7 days, 28 days and 90 days, The tests were conducted on varying percentages of steel fibers and studied for their torsional resistance for combined loading under torsion-bending-shear.The existing literature indicates that many researchers have studied the torsional strength, torsion to moment or torsion to shear of steel fiber reinforced concrete beams. However, scanty literature is available on testing of specimen blended with steel crimped fiber and flyash subjected to combined torsion, bending and shear.Hence, by observing the existing literatures, this work is carried out with different percentages of fibers with the inclusion of admixtures to form binary blended concrete to study the behavior of specimen subjected to combined torsion, bending and shear and to achieve the optimum fiber percentage for Binary Blended Fiber Reinforced Concrete Beams.

Improved tensile performance with fiber reinforced self-compacting concrete

The use of self-compacting concrete (SCC) eliminates the need for compaction, which has benefits related to economic production, the durability, the structural performance and working circumstances. SCC is able to transport fibers which can replace in some structures conventional reinforcement. By taking into account tailor-made concrete characteristics, new fields of structural application can be explored. This paper discusses the potential for an improved performance of fibers in self-compacting concrete. In flexural tests significant differences were observed between conventional and self-compacting concrete at a given fiber type and dosage concerning the variation of results and the flexural performance. Mechanical testing and image studies on concrete cross-sections indicate how the flow influences the performance, the orientation and the distribution of the orientation of fibers. Differences between traditionally compacted and flowable concrete are pointed out.

Tensile Behavior of Steel Fiber-Reinforced Self-Compacting Concrete

SP-274: Fiber Reinforced Self-Consolidating Concrete: Research and Applications, 2010

The tensile behavior of a self-compacting concrete (SCC) reinforced with two hooked ends steel fiber contents was assessed in this paper by performing stable displacement control tension tests. Based on the stress-displacement curves obtained, the stress-crack width relationships were derived, as well as the energy dissipated up to distinct crack width limits and residual strengths. The number of effective fibers bridging the fracture surface was determined and was compared with the theoretical number of fibers, as well as with the stress at crack initiation, residual stresses and energy dissipation parameters. In general, a linear trend between the number of effective fibers and both the stress and energy dissipation parameters was obtained. A numerical model supported on the finite element method was developed in this paper. In this model, the fiber reinforced concrete is assumed as a two phase material: plain concrete and fibers randomly distributed. The plain concrete phase was ...

Mechanical Behavior of Self-Compacting Reinforced Concrete Including Synthetics and Steel Fibers

This paper investigated the effects of combining fibers with selfconsolidating concrete (SCC). 12 series of test specimens were prepared using three kinds of fibers including steel, polyphenylene sulfide (PPS) and glass fibers with four different volumes fractions and one specimen without fibers as a reference sample. All plans were subjected to fresh concrete tests. For mechanical behavior of concrete, compressive, tensile and flexural strength, toughness, fracture energy and force-displacement curves has been studied. Fresh (rheological) properties were assessed using L-Box, Slump flow and T-50 tests. results show that concrete workability is reduced by increasing fiber volume fraction; among different fibers the PPS fibers have less negative effects on rheology. On the contrary, these fibers can improve the splitting tensile, flexural strength, toughness and fracture energy of SCC significantly; however strength of compressive is decreased by increasing the amount of fibers. Adding steel fibers to SCC increases energy absorption eminently.

A STUDY ON MECHANICAL PROPERTIES AND FRACTURE BEHAVIOR OF FIBEROUS SELF-COMPACTING CONCRETE

Transportation is major factor in the world. In that bituminous pavements playing a prominent The growth of Self Compacting Concrete is revolutionary landmark in the history of construction industry resulting in predominant usage of SCC worldwide nowadays. It has many advantages over normal concrete in terms of enhancement in productivity, reduction in labor and overall cost, excellent finished product with excellent mechanical response and durability. Incorporation of fibres further enhances its properties specially related to post crack behaviour of SCC. Hence the aim of the present work is to make a comparative study of mechanical properties of self-consolidating concrete, reinforced with different types of fibres. The variables involve in the study are type and different percentage of fibres. The basic properties of fresh SCC and mechanical properties, toughness, fracture energy and sorptivity were studied. Microstructure study of various mixes is done through scanning electron microscope to study the hydrated structure and bond development between fiber and mix.

Mechanical Properties of Self-compacting Concrete Mixed with Composite Fibers

Journal of Progress in Civil Engineering

Concrete is used nowadays in most of the application for its strength and durability. The limitation in the application is due to its brittleness which causes a sudden failure. Even if the concrete is incorporated with fillers like silica fume, fly ash, slags etc., because of high cement content and low water-cement ratio, it is subjected to early age cracking. To reduce this problem, the application of composite fibre forming hybrid concrete will help in reducing the crack width and improve the load carrying capacity with large amount of deflection before failure. The research led to the study of various engineering properties of different grades of concrete such as compressive strength, splitting strength, flexural strength, relative residual strength, Impact resistance, toughness, durability properties such as resistance to freezing and thawing, sulfuric acid and chloride attack, cracked permeability and effect of elevated temperature is studied with standard experimental investigation. In addition, the study is made with varying the dosage of fibre with varying volumetric fraction between steel, polymeric and glass fibre. Such concrete elements in which the dimensions are altered the efficiency is kept in consideration along with economy to avoid loss in financial and structural aspects.

Mechanical and durability evaluation of fiber-reinforced self-compacting concrete

Construction and Building Materials, 2016

h i g h l i g h t s Effect of fiber addition on mechanical and durability characteristics of SCC was evaluated. Effect of early wetting/drying cycles on FRSCC mechanical properties was investigated. Microstructural analysis of FRSCC and correlation with macro-properties was conducted. Low chloride permeability was achieved confirming adequate durability of FRSCC.

Mechanical properties of self-compacted fiber concrete mixes

HBRC Journal, 2014

Increased productivity and improved working environment have had high priority in the development of concrete construction over the last decade. The major impact of the introduction of self-compacting concrete (SCC) is connected to the production process. The productivity is drastically improved through the elimination of vibration compaction and process reorganization. The working environment is significantly enhanced through avoidance of vibration induced damages, reduced noise and improved safety. Additionally, SCC technology has improved the performance in terms of hardened concrete properties like surface quality, strength and durability. The main objective of this research was to determine the optimum content of fibers (steel and polypropylene fibers) used in SCC. The effect of different fibers on the fresh and hardened properties was studied. An experimental investigation on the mechanical properties, including compressive strength, flexural strength and impact strength of fiber reinforced self-compacting concrete was performed. The results of the investigation showed that: the optimum dosage of steel and polypropylene fiber was 0.75% and 1.0% of the cement content, respectively. The impact performance was also improved due to the use of fibers. The control mix specimen failed suddenly in flexure and impact, the counterpart specimens contain fibers failed in a ductile manner, and failure was accompanied by several cracks.

The Strength Properties of Fibre Reinforced Self Compacting Concrete

Acta Physica Polonica A, 2017

This paper reports results of an experimental study of the strength properties of fibre reinforced self-compacting concrete (FRSCC). For this aim, a control self-compacting concrete and 24 FRSCCs were designed, applying fresh self-compacting concrete criteria tests. In the design of FRSCC, four steel and two polypropylene synthetic fibres of different lengths and aspect ratios were used. These fibres were used alone and in combinations with two and four of these fibres. In this way, not only the effect of single fibre and the synergy effect of hybrid fibres, but also the size and concentration effect of fibres, which had different ratios in total fibre volume, were investigated. In the design process, Portland cement and fly ash were used as the binder and the powder material. The compressive and flexural-tensile strength tests were employed at the age of 3, 7, 28, 56 and 90 curing days, to determine the strength properties of FRSCCs. Moreover, ultrasound pulse velocity test was also performed on all concrete series at the same ages.