Expansion of human hematopoietic stem cells by inhibiting translation (original) (raw)

Abstract

Hematopoietic stem cell (HSC) transplantation using umbilical cord blood (UCB) is a potentially life-saving treatment for leukemia and bone marrow failure but is limited by the low number of HSCs in UCB. The loss of HSCs after ex vivo manipulation is also a major obstacle to gene editing for inherited blood disorders. HSCs require a low rate of translation to maintain their capacity for self-renewal, but hematopoietic cytokines used to expand HSCs stimulate protein synthesis and impair long-term self-renewal. We previously described cytokine-free conditions that maintain but do not expand human and mouse HSCs ex vivo. Here we performed a high throughput screen and identified translation inhibitors that allow ex vivo expansion of human HSCs while minimizing cytokine exposure. Transplantation assays show a ~5-fold expansion of long-term HSCs from UCB after one week of culture in low cytokine conditions. Single cell transcriptomic analysis demonstrates maintenance of HSCs expressing mediators of the unfolded protein stress response, further supporting the importance of regulated proteostasis in HSC maintenance and expansion. This expansion method maintains and expands human HSCs after CRISPR/Cas9 editing of the BCL11A+58 enhancer, overcoming a major obstacle to ex vivo gene correction for human hemoglobinopathies.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (63)

  1. van Galen, P., et al. Integrated Stress Response Activity Marks Stem Cells in Normal Hematopoiesis and Leukemia. Cell reports 25, 1109-1117 e1105 (2018).
  2. Signer, R.A., Magee, J.A., Salic, A. & Morrison, S.J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49-54 (2014).
  3. Purton, L.E. & Scadden, D.T. Limiting factors in murine hematopoietic stem cell assays. Cell stem cell 1, 263-270 (2007).
  4. Chou, S., Chu, P., Hwang, W. & Lodish, H. Expansion of human cord blood hematopoietic stem cells for transplantation. Cell stem cell 7, 427-428 (2010).
  5. Gragert, L., et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. The New England journal of medicine 371, 339-348 (2014).
  6. Lund, T.C., Boitano, A.E., Delaney, C.S., Shpall, E.J. & Wagner, J.E. Advances in umbilical cord blood manipulation-from niche to bedside. Nat Rev Clin Oncol 12, 163- 174 (2015).
  7. Li, D., Li, X., Liao, L. & Li, N. Unrelated cord blood transplantation versus haploidentical transplantation in adult and pediatric patients with hematological malignancies-A meta- analysis and systematic review. Am J Blood Res 10, 1-10 (2020).
  8. Arcuri, L.J., Aguiar, M.T.M., Ribeiro, A.A.F. & Pacheco, A.G.F. Haploidentical Transplantation with Post-Transplant Cyclophosphamide versus Unrelated Donor Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis. Biol Blood Marrow Transplant 25, 2422-2430 (2019).
  9. Shi, P.A., Luchsinger, L.L., Greally, J.M. & Delaney, C.S. Umbilical cord blood: an undervalued and underutilized resource in allogeneic hematopoietic stem cell transplant and novel cell therapy applications. Current opinion in hematology 29, 317-326 (2022).
  10. Gluckman, E., et al. Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. The New England journal of medicine 321, 1174-1178 (1989).
  11. Laughlin, M.J., et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. The New England journal of medicine 351, 2265-2275 (2004).
  12. Kindwall-Keller, T.L. & Ballen, K.K. Umbilical cord blood: The promise and the uncertainty. Stem Cells Transl Med 9, 1153-1162 (2020).
  13. Ballen, K.K., Gluckman, E. & Broxmeyer, H.E. Umbilical cord blood transplantation: the first 25 years and beyond. Blood 122, 491-498 (2013).
  14. Li, H.W. & Sykes, M. Emerging concepts in haematopoietic cell transplantation. Nat Rev Immunol 12, 403-416 (2012).
  15. Shahrokhi, S., Menaa, F., Alimoghaddam, K., McGuckin, C. & Ebtekar, M. Insights and hopes in umbilical cord blood stem cell transplantations. J Biomed Biotechnol 2012, 572821 (2012).
  16. Broxmeyer, H.E. Enhancing engraftment of cord blood cells via insight into the biology of stem/progenitor cell function. Ann N Y Acad Sci 1266, 151-160 (2012).
  17. Wagner, J.E., Jr., et al. One-unit versus two-unit cord-blood transplantation for hematologic cancers. The New England journal of medicine 371, 1685-1694 (2014).
  18. Chaurasia, P., Gajzer, D.C., Schaniel, C., D'Souza, S. & Hoffman, R. Epigenetic reprogramming induces the expansion of cord blood stem cells. The Journal of clinical investigation 124, 2378-2395 (2014).
  19. Fares, I., et al. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345, 1509-1512 (2014).
  20. Boitano, A., E., et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329, 1345-1348 (2010).
  21. Delaney, C., et al. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nature medicine 16, 232-236. (2010).
  22. Goessling, W., et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136, 1136-1147 (2009).
  23. Guo, B., Huang, X., Lee, M.R., Lee, S.A. & Broxmeyer, H.E. Antagonism of PPAR- gamma signaling expands human hematopoietic stem and progenitor cells by enhancing glycolysis. Nature medicine 24, 360-367 (2018).
  24. Hua, P., et al. The BET inhibitor CPI203 promotes ex vivo expansion of cord blood long- term repopulating HSCs and megakaryocytes. Blood 136, 2410-2415 (2020).
  25. Rentas, S., et al. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells. Nature 532, 508-511 (2016).
  26. Kharas, M.G., et al. Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nature medicine 16, 903-908 (2010).
  27. Clapes, T. & Robin, C. Embryonic development of hematopoietic stem cells: implications for clinical use. Regen Med 7, 349-368 (2012).
  28. Wilkinson, A.C., et al. Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature 571, 117-121 (2019).
  29. Perry, J.M., et al. Cooperation between both Wnt/beta-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes & development 25, 1928-1942 (2011).
  30. Himburg, H.A., et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nature medicine 16, 475-482 (2010).
  31. Zhang, C.C., et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nature medicine 12, 240-245 (2006).
  32. Horwitz, M.E., et al. Omidubicel vs standard myeloablative umbilical cord blood transplantation: results of a phase 3 randomized study. Blood 138, 1429-1440 (2021).
  33. Bai, T., et al. Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel. Nature medicine 25, 1566-1575 (2019).
  34. Cohen, S., et al. Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1-2 safety and feasibility study. Lancet Haematol 7, e134-e145 (2020).
  35. Wagner, J.E., Jr., et al. Phase I/II Trial of StemRegenin-1 Expanded Umbilical Cord Blood Hematopoietic Stem Cells Supports Testing as a Stand-Alone Graft. Cell stem cell 18, 144-155 (2016).
  36. Heike, T. & Nakahata, T. Ex vivo expansion of hematopoietic stem cells by cytokines. Biochimica et biophysica acta 1592, 313-321 (2002).
  37. Dahlberg, A., Delaney, C. & Bernstein, I.D. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood 117, 6083-6090 (2011).
  38. Sakurai, M., et al. Chemically defined cytokine-free expansion of human haematopoietic stem cells. Nature 615, 127-133 (2023).
  39. Nguyen-McCarty, M. & Klein, P.S. Autophagy is a signature of a signaling network that maintains hematopoietic stem cells. PloS one 12, e0177054 (2017).
  40. Huang, J., Nguyen-McCarty, M., Hexner, E.O., Danet-Desnoyers, G. & Klein, P.S. Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nature medicine 18, 1778-1785 (2012).
  41. Masuda, S., Li, M. & Izpisua Belmonte, J.C. Niche-less maintenance of HSCs by 2i. Cell research 23, 458-459 (2013).
  42. van Galen, P., et al. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature 510, 268-272 (2014).
  43. Signer, R.A., et al. The rate of protein synthesis in hematopoietic stem cells is limited partly by 4E-BPs. Genes & development 30, 1698-1703 (2016).
  44. Kruta, M., et al. Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to ex vivo culture stress and aging. Cell stem cell 28, 1950-1965 e1956 (2021).
  45. Hidalgo San Jose, L., et al. Modest Declines in Proteome Quality Impair Hematopoietic Stem Cell Self-Renewal. Cell reports 30, 69-80 e66 (2020).
  46. Burgess, R.J., Zhao, Z., Nakada, D. & Morrison, S.J. Bmi1 suppresses protein synthesis and promotes proteostasis in hematopoietic stem cells. Genes & development 36, 887- 900 (2022).
  47. Spevak, C.C., et al. Hematopoietic Stem and Progenitor Cells Exhibit Stage-Specific Translational Programs via mTOR-and CDK1-Dependent Mechanisms. Cell stem cell 26, 755-765 e757 (2020).
  48. Keyvani Chahi, A., et al. PLAG1 dampens protein synthesis to promote human hematopoietic stem cell self-renewal. Blood 140, 992-1008 (2022).
  49. Baum, C.M., Weissman, I.L., Tsukamoto, A.S., Buckle, A.M. & Peault, B. Isolation of a candidate human hematopoietic stem-cell population. Proceedings of the National Academy of Sciences of the United States of America 89, 2804-2808 (1992).
  50. Hetz, C. & Papa, F.R. The Unfolded Protein Response and Cell Fate Control. Molecular cell 69, 169-181 (2018).
  51. Cencic, R., et al. Reversing chemoresistance by small molecule inhibition of the translation initiation complex eIF4F. Proceedings of the National Academy of Sciences of the United States of America 108, 1046-1051 (2011).
  52. Liu, J., Xu, Y., Stoleru, D. & Salic, A. Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin. Proceedings of the National Academy of Sciences of the United States of America 109, 413-418 (2012).
  53. Shultz, L.D., et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174, 6477-6489 (2005).
  54. Bauer, D.E., et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342, 253-257 (2013).
  55. Sankaran, V.G., et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322, 1839-1842 (2008).
  56. Esrick, E.B., et al. Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease. The New England journal of medicine 384, 205-215 (2021).
  57. Frangoul, H., et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and beta- Thalassemia. The New England journal of medicine 384, 252-260 (2021).
  58. Wey, S., Luo, B. & Lee, A.S. Acute inducible ablation of GRP78 reveals its role in hematopoietic stem cell survival, lymphogenesis and regulation of stress signaling. PloS one 7, e39047 (2012).
  59. Jefferies, H.B., Reinhard, C., Kozma, S.C. & Thomas, G. Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family. Proceedings of the National Academy of Sciences of the United States of America 91, 4441-4445 (1994).
  60. Zheng, S., Papalexi, E., Butler, A., Stephenson, W. & Satija, R. Molecular transitions in early progenitors during human cord blood hematopoiesis. Mol Syst Biol 14, e8041 (2018).
  61. Edgar, R., Domrachev, M. & Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic acids research 30, 207-210 (2002).
  62. Huang, P., et al. The HRI-regulated transcription factor ATF4 activates BCL11A transcription to silence fetal hemoglobin expression. Blood 135, 2121-2132 (2020).
  63. Peslak, S.A., et al. HRI depletion cooperates with pharmacologic inducers to elevate fetal hemoglobin and reduce sickle cell formation. Blood Adv 4, 4560-4572 (2020).