The computing power of Turing machine based on quantum logic (original) (raw)

Turing machines based on quantum logic can solve undecidableproblems. In this paper we will give recursion-theoreticalcharacterization of the computational power of this kind of quantumTuring machines. In detail, for the unsharp case, it is proved that&#931<sup>0</sup><sub>1</sub>&#8746&#928<sup>0</sup><sub>1</sub>&#8838L<sup>T</sup><sub>d</sub>(&#949,&#931)(L<sup>T</sup><sub>w</sub>(&#949,&#931))&#8838&#928<sup>0</sup><sub>2</sub>when the truth value lattice is locally finite and the operation &#8743is computable, whereL<sup>T</sup><sub>d</sub>(&#949,&#931)(L<sup>T</sup><sub>w</sub>(&#949,&#931))denotes theclass of quantum language accepted by these Turing machine indepth-first model (respectively, width-first model);for the sharp case, we can obtain similar results for usual orthomodular lattices.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.