Real time speed-limit sign recognition invariant to image scale (original) (raw)
2015
Abstract
요 약 본 논문에서는 MB-LBP(Multi-scale Block Local Binary Patterns)와 공간피라미드를 이용하여 생성된 특 징을 랜덤 포레스트(Random Forest) 분류기에 적용하여 영상내의 표지판 속도를 인식하는 알고리즘을 제안한다. 입력 영상에서 표지판 영역은 다양한 위치와 크기를 가지며 주위 배경이 후보 영역에 포함 되므로 먼저 입력 영상에 원형 Hough Transform을 적용하여 원형의 표지판 후보 영역만을 검출한다. 그 후 영상의 화질을 향상시키기 위해 히스토그램 평활화와 모폴로지 연산을 적용하여 표지판의 숫자 영역과 배경 영역의 대비를 높이도록 한다. 표지판의 크기 변화에 강건한 시스템의 구현을 위해 후보 영역에서 LBP(Local Binary Patterns)보다 우수한 성능을 보이는 MB-LBP를 적용하고, 다양한 크기의 속 도 표지판을 인식하기 위해 공간 피라미드를 사용하여 지역적 특징과 전역적 특징 모두를 추출하였다. 추출된 특징은 랜덤 포레스트(Random Forest)를 이용하여 각 9개의 속도 표지판으로 분류, 각 속도별 클래스에 대한 인식 성능을 측정하였다.
Byoung Chul Ko hasn't uploaded this paper.
Let Byoung Chul know you want this paper to be uploaded.
Ask for this paper to be uploaded.