NestFL (original) (raw)

Distilling On-Device Intelligence at the Network Edge

ArXiv, 2019

Devices at the edge of wireless networks are the last mile data sources for machine learning (ML). As opposed to traditional ready-made public datasets, these user-generated private datasets reflect the freshest local environments in real time. They are thus indispensable for enabling mission-critical intelligent systems, ranging from fog radio access networks (RANs) to driverless cars and e-Health wearables. This article focuses on how to distill high-quality on-device ML models using fog computing, from such user-generated private data dispersed across wirelessly connected devices. To this end, we introduce communication-efficient and privacy-preserving distributed ML frameworks, termed fog ML (FML), wherein on-device ML models are trained by exchanging model parameters, model outputs, and surrogate data. We then present advanced FML frameworks addressing wireless RAN characteristics, limited on-device resources, and imbalanced data distributions. Our study suggests that the full ...

SemiPFL: Personalized Semi-Supervised Federated Learning Framework for Edge Intelligence

arXiv (Cornell University), 2022

Recent advances in wearable devices and Internetof-Things (IoT) have led to massive growth in sensor data generated in edge devices. Labeling such massive data for classification tasks has proven to be challenging. In addition, data generated by different users bear various personal attributes and edge heterogeneity, rendering it impractical to develop a global model that adapts well to all users. Concerns over data privacy and communication costs also prohibit centralized data accumulation and training. We propose SemiPFL that supports edge users having no label or limited labeled datasets and a sizable amount of unlabeled data that is insufficient to train a well-performing model. In this work, edge users collaborate to train a Hypernetwork in the server, generating personalized autoencoders for each user. After receiving updates from edge users, the server produces a set of base models for each user, which the users locally aggregate them using their own labeled dataset. We comprehensively evaluate our proposed framework on various public datasets from a wide range of application scenarios, from wearable health to IoT, and demonstrate that SemiPFL outperforms state-of-art federated learning frameworks under the same assumptions regarding user performance, network footprint, and computational consumption. We also show that the solution performs well for users without label or having limited labeled datasets and increasing performance for increased labeled data and number of users, signifying the effectiveness of SemiPFL for handling data heterogeneity and limited annotation. We also demonstrate the stability of SemiPFL for handling user hardware resource heterogeneity in three real-time scenarios.

Federated Learning in Mobile Edge Networks: A Comprehensive Survey

IEEE Communications Surveys & Tutorials, 2020

In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.

Fine-Grained Data Selection for Improved Energy Efficiency of Federated Edge Learning

IEEE Transactions on Network Science and Engineering

In Federated edge learning (FEEL), energyconstrained devices at the network edge consume significant energy when training and uploading their local machine learning models, leading to a decrease in their lifetime. This work proposes novel solutions for energy-efficient FEEL by jointly considering local training data, available computation, and communications resources, and deadline constraints of FEEL rounds to reduce energy consumption. This paper considers a system model where the edge server is equipped with multiple antennas employing beamforming techniques to communicate with the local users through orthogonal channels. Specifically, we consider a problem that aims to find the optimal user's resources, including the fine-grained selection of relevant training samples, bandwidth, transmission power, beamforming weights, and processing speed with the goal of minimizing the total energy consumption given a deadline constraint on the communication rounds of FEEL. Then, we devise tractable solutions by first proposing a novel finegrained training algorithm that excludes less relevant training samples and effectively chooses only the samples that improve the model's performance. After that, we derive closed-form solutions, followed by a Golden-Section-based iterative algorithm to find the optimal computation and communication resources that minimize energy consumption. Experiments using MNIST and CIFAR-10 datasets demonstrate that our proposed algorithms considerably outperform the state-of-the-art solutions as energy consumption decreases by 79% for MNIST and 73% for CIFAR-10 datasets.

Compact optimized deep learning model for edge: a review

International Journal of Electrical and Computer Engineering (IJECE), 2023

Most real-time computer vision applications, such as pedestrian detection, augmented reality, and virtual reality, heavily rely on convolutional neural networks (CNN) for real-time decision support. In addition, edge intelligence is becoming necessary for low-latency real-time applications to process the data at the source device. Therefore, processing massive amounts of data impact memory footprint, prediction time, and energy consumption, essential performance metrics in machine learning based internet of things (IoT) edge clusters. However, deploying deeper, dense, and hefty weighted CNN models on resource-constraint embedded systems and limited edge computing resources, such as memory, and battery constraints, poses significant challenges in developing the compact optimized model. Reducing the energy consumption in edge IoT networks is possible by reducing the computation and data transmission between IoT devices and gateway devices. Hence there is a high demand for making energy-efficient deep learning models for deploying on edge devices. Furthermore, recent studies show that smaller compressed models achieve significant performance compared to larger deep-learning models. This review article focuses on state-of-the-art techniques of edge intelligence, and we propose a new research framework for designing a compact optimized deep learning (DL) model deployment on edge devices.

Federated Edge Learning: Design Issues and Challenges

IEEE Network, 2021

Federated Learning (FL) is a distributed machine learning technique, where each device contributes to the learning model by independently computing the gradient based on its local training data. It has recently become a hot research topic, as it promises several benefits related to data privacy and scalability. However, implementing FL at the network edge is challenging due to system and data heterogeneity and resources constraints. In this article, we examine the existing challenges and trade-offs in Federated Edge Learning (FEEL). The design of FEEL algorithms for resources-efficient learning raises several challenges. These challenges are essentially related to the multidisciplinary nature of the problem. As the data is the key component of the learning, this article advocates a new set of considerations for data characteristics in wireless scheduling algorithms in FEEL. Hence, we propose a general framework for the data-aware scheduling as a guideline for future research directions. We also discuss the main axes and requirements for data evaluation and some exploitable techniques and metrics.

Energy-Efficient Multi-Orchestrator Mobile Edge Learning

ArXiv, 2021

Mobile Edge Learning (MEL) is a collaborative learning paradigm that features distributed training of Machine Learning (ML) models over edge devices (e.g., IoT devices). In MEL, possible coexistence of multiple learning tasks with different datasets may arise. The heterogeneity in edge devices’ capabilities will require the joint optimization of the learnersorchestrator association and task allocation. To this end, we aim to develop an energy-efficient framework for learners-orchestrator association and learning task allocation, in which each orchestrator gets associated with a group of learners with the same learning task based on their communication channel qualities and computational resources, and allocate the tasks accordingly. Therein, a multi-objective optimization problem is formulated to minimize the total energy consumption and maximize the learning tasks’ accuracy. However, solving such optimization problem requires centralization and the presence of the whole environment...

Application Optimizing AI Performance on Edge Devices: A Comprehensive Approach using Model Compression, Federated Learning, and Distributed Inference

International Journal of Automation, Artificial Intelligence and Machine Learning, 2024

One major problem arises when AI models are run on edge devices because these have limited processing power, battery, and time constraints. This article explores methods to improve the performance of AI models in such settings so that they operate optimally and simultaneously and provide fast and accurate results. Some methods include model compression techniques such as pruning and quantizing, which make the model small sized to make the required computations with low energy utilization and knowledge distillation. Moreover, a special concern is checking the possibility of using federated learning as one of the ways of training AI models on devices spread across a distributed network while maintaining users’ privacy and avoiding the need to transfer the data to the central server. Another approach, distributed inference, in which the computations are suitably divided between different devices, is also investigated to enhance system performance and reduce latency. The use of these techniques is described in terms of the limited capabilities inherent to devices like smartphones, IoT sensors, and autonomous systems. In this work, efforts have been made to improve the inference and model deployment in edge AI systems, which is instrumental in enhancing the end user experience and smart energy usage by bringing sophisticated scale out edge-computing solutions closer to reality through application optimized edge AI models and frameworks.

Dynamic Data Sample Selection and Scheduling in Edge Federated Learning

IEEE Open Journal of the Communications Society

Federated Learning (FL) is a state-of-the-art paradigm used in Edge Computing (EC). It enables distributed learning to train on cross-device data, achieving efficient performance, and ensuring data privacy. In the era of Big Data, the Internet of Things (IoT), and data streaming, challenges such as monitoring and management remain unresolved. Edge IoT devices produce and stream huge amounts of sample sources, which can incur significant processing, computation, and storage costs during local updates using all data samples. Many research initiatives have improved the algorithm for FL in homogeneous networks. However, in the typical distributed learning application scenario, data is generated independently by each device, and this heterogeneous data has different distribution characteristics. As a result, the data stream, often characterized as Big Data, used by each device for local learning is unbalanced and is not independent or identically distributed. Such data heterogeneity can degrade the performance of FL and reduce resource utilization. In this paper, we present the DSS-Edge-FL, a Dynamic Sample Selection optimization algorithm that aims to optimize resources and address data heterogeneity. The extensive results of the experiment demonstrate that our proposed approach outperforms the resource efficiency of conventional training methods, with a lower convergence time and improved resource efficiency. INDEX TERMS Federated learning, edge computing, intelligent edge, data streaming, big data, dynamic resource allocation. I. INTRODUCTION F EDERATED Learning (FL) is an emerging approach for handling distributed learning across multiple network edges. It has proven efficient in ensuring high performance and privacy. Several developments and research initiatives have proposed solutions to address the various challenges of FL, including data heterogeneity, imbalance, size diversity, and network heterogeneity [1]. Using terminal devices, FL trains DNN models collaboratively. The FL training process comprises two steps: (i) local model training on end devices, and (ii) global parameter aggregation [2]. Therefore, the terminal edge devices must possess sufficient computing and storage capacities to handle the learning process. However, terminals are generally resource-constrained devices where communication and computation resources are limited [3]. Consequently, a solution is required that optimizes the training dataset size and resource utilization. The 'data island' problem in the Internet of Things (IoT) refers to the situation where Big Data generated by IoT devices is siloed and not easily shared or integrated with other Big Data sources. This can make it difficult to gain insights from the Big Data and to make decisions based on it. This problem often arises due to a lack of standardization in the way that Big Data is collected, stored, and transmitted by IoT devices, as

Cost-effective Machine Learning Inference Offload for Edge Computing

ArXiv, 2020

Computing at the edge is increasingly important since a massive amount of data is generated. This poses challenges in transporting all that data to the remote data centers and cloud, where they can be processed and analyzed. On the other hand, harnessing the edge data is essential for offering data-driven and machine learning-based applications, if the challenges, such as device capabilities, connectivity, and heterogeneity can be mitigated. Machine learning applications are very compute-intensive and require processing of large amount of data. However, edge devices are often resources-constrained, in terms of compute resources, power, storage, and network connectivity. Hence, limiting their potential to run efficiently and accurately state-of-the art deep neural network (DNN) models, which are becoming larger and more complex. This paper proposes a novel offloading mechanism by leveraging installed-base on-premises (edge) computational resources. The proposed mechanism allows the e...