Some Properties of Strictly Quasi-Fredholm Linear Relations (original) (raw)

Abstract

In this paper we rst give some properties of strictly quasi-Fredholm linear relations. Next we investigate the perturbation of this class under nite rank operators.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (20)

  1. T. Alvarez, On Regular Linear Relations, Acta Mathematica Sinica, English Series Jan, (2012) Vol. 28, N • 1, 183-194.
  2. R. Arens, Operational Calculus of Linear relations, Pacific J. Math. Volume 11, Number 1 (1961), 9-23.
  3. M. Berkani, Théorème de l'application spectrale pour le spectre essentiel quasi Fredholm, Proc. Amer. Soci. 125,(1997), 763-774 .
  4. M. Berkani, Restriction of an operator to the range of its powers, Studia Mathematica 140 (2) (2000), 162-175.
  5. M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasgow Math J. 43 (2001) 457-465.
  6. H. Bouaniza and M. Mnif, On strictly quasi-Fredholm linear relations and semi-B-Fredholm linear relation pertur- bations, Filomat vol 31, N • 20, (2017), 6337-6355.
  7. E. Chafai, M. Mnif, Descent and Essential Descent Spectrum of Linear Relations, Extracta Mathematicae vol 29, Nam. 1-2, (2014), 117-139.
  8. Y. Chamkha, M. Mnif, The class of B-Fredholm linear relations, Complex Analysis and Operator Theory vol 9, issue 8,(2015),1681-1699
  9. Y. Chamkha, Spectrum of matrix linear relations and study of B-Fredholm and Quasi-Fredholm linear relations, doctoral thesis,University of Sfax-Tunisie (2014).
  10. R. Cross, On the continuous linear image of a Banach space. J. Austral. Math. Soc. (Series A) 29 (1980), 219-234.
  11. R. Cross, Multivalued theorem for the product of linear relations, Linear Algebra and its Applications 277,(1998), 127-134.
  12. F. Fakhfakh, M.Mnif, Perturbation theory of lower semi-Browder multivalued linear operators, Pub. Math. De- brecen, 78/3-4 (2011), 595-606.
  13. S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 N • 2 (1982), 317-337.
  14. B. Hamid, K. Mohammed and T. Abdelaziz, Quasi-Fredholm, Saphar Spectra for C 0 Semigroups Generators, Ital. of pure and appl math. N • 36, (2016), (359, 366).
  15. J. PH. Labrousse, Les opérateurs Quasi Fredholm: une généralisation des opérateurs semi-Fredholm, Rend. Circ. Math, Palermo. 29, (1980), 161-258.
  16. J. PH. Labrousse, The Kato decomposition of quasi-Fredholm relations, Operators and Matrices, 4 (2010), 1-51.
  17. M. Mbekhta, V. Muller, On the axiomatic of spectrum II, Studia mathematica 119 (2) (1996), 128-147.
  18. V. Muller, Spectral theory of linear operators and spectral systems in Banach algebras, Operator Theory: Ad- vances and Applications Vol.139 Berlin (2007).
  19. A. Sandovici, H. DE Snoo, H. Winkler: Ascent, nullity, defect, and related notions for linear relations in linear spaces, Linear Algebra and its Applications 423, (2007) 456-497.
  20. D. Wilcox, Multivalued semi-Fredholm Operators in Normed Linear Spaces, doctoral thesis, University of Cape Town (2002).