Xeroderma pigmentosum complementation group C genotypes/diplotypes play no independent or interaction role with polycyclic aromatic hydrocarbons-DNA adducts for breast cancer risk (original) (raw)
Xeroderma pigmentosum complementation group C (XPC) is an important DNA nuclear excision repair (NER) gene that recognizes the damage caused by variety of bulky DNA adducts. We evaluated the association of two common non-synonymous polymorphisms in XPC (Ala499Val and Lys939Gln) with breast cancer risk in the Long Island Breast Cancer Study Project (LIBCSP), a population-based case-control study. Genotyping of 1,067 cases and 1,110 controls was performed by a high throughput assay with fluorescence polarization. There were no overall associations between XPC polymorphisms and breast cancer risk. A diplotype CC-CC was significantly associated with increased breast cancer risk compared with diplotype CA-CA (OR = 1.4, 95%CI: 1.0-1.9), but was not significant when compared with all other diplotypes combined (OR = 1.22, 95%CI: 0.97-1.53). No modification effects were observed for XPC genotypes by cigarette smoking status, smoking pack years or polycyclic aromatic hydrocarbons (PAH) DNA adducts. The increase in breast cancer risk was slightly more pronounced among women with detectable PAH-DNA adducts and carrying the diplotype CC-CC (OR = 1.6, 95%CI: 1.1-2.2) compared to women with non detectable PAH-DNA adducts carrying other diplotypes combined, but no statistically significant interaction was observed (P interaction = 0.69). These data suggest that XPC have neither independent effects nor interactions with cigarette smoking and PAH-DNA adducts for breast cancer risk. Further studies with multiple genetic polymorphisms in NER pathway are warranted.