Insights into receptor structure and dynamics at the surface of living cells (original) (raw)
Abstract
Evaluating protein structures in living cells remains a challenge. Here, we investigate Interleukin-4 receptor alpha (IL-4Rα) into which the non-canonical amino acid bicyclo[6.1.0]nonyne-lysine (BCNK) is incorporated by genetic code expansion. Bioorthogonal click labeling is performed with tetrazine-conjugated dyes. To quantify the reaction yield in situ, we develop brightness-calibrated ratiometric imaging, a protocol where fluorescent signals in confocal multicolor images are ascribed to local concentrations. Screening receptor mutants bearing BCNK in the extracellular domain uncovered site-specific variations of both click efficiency and Interleukin-4 binding affinity, indicating subtle welldefined structural perturbations. Molecular dynamics and continuum electrostatics calculations suggest solvent polarization to determine site-specific variations of BCNK reactivity. Strikingly, signatures of differential click efficiency, measured for IL-4Rα in ligand-bound and free form, mirror subangstrom deformations of the protein backbone at corresponding locations. Thus, click efficiency by itself represents a remarkably informative readout linked to protein structure and dynamics in the native plasma membrane. Site-specific manipulation of proteins by genetic code expansion (GCE), a technique that introduces non-canonical amino acids (ncAA) into the otherwise native polypeptide chain, offers fascinating possibilities for the investigation of protein function in living cells 1,2. The introduced ncAA carries bioorthogonal reactivity for the site-specific conjugation of biophysical probes featuring negligible interference with components of the cell 3,4. A variety of chemical strategies termed click labeling emerged for site-specific conjugation of sensor molecules to ncAA under physiological conditions 5. As an alternative to metal-catalyzed click reactions, inverse electron-demand Diels-Alder cycloaddition (iEDDAC) of tetrazine derivatives to ncAA side chains presenting reactive dienophiles provides superior reaction rates for fast coupling to targets expressed via GCE 6-11. Bioorthogonal click labeling with fluorescent dyes was successfully combined with biophysical single-cell methods to address common issues in receptor research, like diffusion, oligomerization states, and conformational changes 12-18. However, only few attempts have been made to systematically quantify the yields of bioorthogonal reactions per se 19. Because the experimental throughput is limited, efforts to optimize click reaction conditions can be substantial 20,21. Fluorescence fluctuation analysis provides a simple means for transforming confocal images into molecular concentration maps 22 and is therefore a powerful extension for live cell imaging 23,24. Consequently, fluorescence fluctuation analysis was introduced as a routine validation protocol in bioorthogonal labeling 25. However, even elaborate instrumentation cannot circumvent the systematic errors inherent to single-cell measurements. Cells are far-from-equilibrium systems that carry out a myriad of processes on various time scales. Data curation must be carefully executed post-measurement to extract meaningful information. To mitigate these efforts, we here develop
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (72)
- Lang, K. & Chin, J. W. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 114, 4764-4806 (2014).
- Wang, L. & Schultz, P. G. Expanding the genetic code. Angew. Chem. Int. Ed. 44, 34-66 (2005).
- Rigolot, V., Biot, C. & Lion, C. To View Your Biomolecule, Click inside the Cell. Angew. Chem. Int. Ed. 60, 23084-23105 (2021).
- Tian, Y. L. & Lin, Q. Fitness Factors for Bioorthogonal Chemical Probes. ACS Chem. Biol. 14, 2489-2496 (2019).
- Scinto, S.L. et al. Bioorthogonal chemistry. Nat. Rev. Methods Pri- mers 1, 30 (2021).
- Blackman, M. L., Royzen, M. & Fox, J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 130, 13518-13519 (2008).
- Borrmann, A. et al. Genetic encoding of a bicyclo[6.1.0]nonyne- charged amino acid enables fast cellular protein imaging by metal- free ligation. Chembiochem 13, 2094-2099 (2012).
- Lang, K. et al. Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat. Chem. 4, 298-304 (2012).
- Lang, K. et al. Genetic Encoding of bicyclononynes and trans- cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. J. Am. Chem. Soc. 134, 10317-10320 (2012).
- Oliveira, B. L., Guo, Z. & Bernardes, G. J. L. Inverse electron demand Diels-Alder reactions in chemical biology. Chem. Soc. Rev. 46, 4895-4950 (2017).
- Plass, T. et al. Amino acids for Diels-Alder reactions in living cells. Angew. Chem. Int. Ed. 51, 4166-4170 (2012).
- Baumdick, M. et al. A conformational sensor based on genetic code expansion reveals an autocatalytic component in EGFR activation. Nat. Commun. 9, 3847 (2018).
- Bessa-Neto, D. et al. Bioorthogonal labeling of transmembrane proteins with non-canonical amino acids unveils masked epitopes in live neurons. Nat. Commun. 12, 6715 (2021).
- Konig, A. I. et al. Live cell single molecule tracking and localization microscopy of bioorthogonally labeled plasma membrane pro- teins. Nanoscale 12, 3236-3248 (2020).
- Kowalski-Jahn, M. et al. Frizzled BRET sensors based on bioortho- gonal labeling of unnatural amino acids reveal WNT-induced dynamics of the cysteine-rich domain. Sci. Adv. 7, eabj7917 (2021).
- Neubert, F. et al. Bioorthogonal Click Chemistry Enables Site- specific Fluorescence Labeling of Functional NMDA Receptors for Super-Resolution Imaging. Angew. Chem. Int. Ed. 57, 16364-16369 (2018).
- Nikic, I. et al. Debugging Eukaryotic Genetic Code Expansion for Site-Specific Click-PAINT Super-Resolution Microscopy. Angew. Chem. Int. Ed. 55, 16172-16176 (2016).
- Uttamapinant, C. et al. Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins. J. Am. Chem. Soc. 137, 4602-4605 (2015).
- Serfling, R. et al. Quantitative Single-Residue Bioorthogonal Labeling of G Protein-Coupled Receptors in Live Cells. ACS Chem. Biol. 14, 1141-1149 (2019).
- Elia, N. Using unnatural amino acids to selectively label proteins for cellular imaging: A cell-biologist viewpoint. FEBS J. 288, 1107-1117 (2020).
- Nikic-Spiegel, I. Expanding the Genetic Code for Neuronal Studies. Chembiochem 21, 3169-3179 (2020).
- Weidemann, T. et al. Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and con- focal imaging. J. Mol. Biol. 334, 229-240 (2003).
- Digman, M. A. & Gratton, E. Lessons in fluctuation correlation spectroscopy. Annu. Rev. Phys. Chem. 62, 645-668 (2011).
- Weidemann, T., Mucksch, J. & Schwille, P. Fluorescence fluctuation microscopy: a diversified arsenal of methods to investigate mole- cular dynamics inside cells. Curr. Opin. Struct. Biol. 28C, 69-76 (2014).
- Isbilir, A. et al. Determination of G-protein-coupled receptor oligo- merization by molecular brightness analyses in single cells. Nat. Protoc. 16, 1419-1451 (2021).
- Hage, T., Sebald, W. & Reinemer, P. Crystal structure of the inter- leukin-4/receptor alpha chain complex reveals a mosaic binding interface. Cell 97, 271-281 (1999).
- LaPorte, S. L. et al. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 132, 259-272 (2008).
- Wang, Y., Shen, B. J. & Sebald, W. A mixed-charge pair in human interleukin 4 dominates high-affinity interaction with the receptor alpha chain. Proc. Natl Acad. Sci. 94, 1657-1662 (1997).
- Zhang, J. L., Simeonowa, I., Wang, Y. & Sebald, W. The high-affinity interaction of human IL-4 and the receptor alpha chain is con- stituted by two independent binding clusters. J. Mol. Biol. 315, 399-407 (2002).
- Gandhi, H. et al. Dynamics and interaction of interleukin-4 receptor subunits in living cells. Biophys. J. 107, 2515-2527 (2014).
- Kurgonaite, K. et al. Essential role of endocytosis for interleukin-4- receptor-mediated JAK/STAT signalling. J. Cell. Sci. 128, 3781-3795 (2015).
- Moraga, I. et al. Instructive roles for cytokine-receptor binding parameters in determining signaling and functional potency. Sci. Signal. 8, ra114 (2015).
- Richter, D. et al. Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma mem- brane microcompartments. Nat. Commun. 8, 15976 (2017).
- Weidemann, T. et al. Single cell analysis of ligand binding and complex formation of interleukin-4 receptor subunits. Biophys. J. 101, 2360-2369 (2011).
- Mideksa, Y. G. et al. Site-Specific Protein Labeling with Fluor- ophores as a Tool To Monitor Protein Turnover. Chembiochem 21, 1861-1867 (2020).
- Schmied, W. H., Elsasser, S. J., Uttamapinant, C. & Chin, J. W. Effi- cient multisite unnatural amino acid incorporation in mammalian cells via optimized pyrrolysyl tRNA synthetase/tRNA expression and engineered eRF1. J. Am. Chem. Soc. 136, 15577-15583 (2014).
- Duppatla, V. et al. Enzymatic deglutathionylation to generate interleukin-4 cysteine muteins with free thiol. Bioconjug. Chem. 23, 1396-1405 (2012).
- Worch, R., Petrasek, Z., Schwille, P. & Weidemann, T. Diffusion of Single-Pass Transmembrane Receptors: From the Plasma Mem- brane into Giant Liposomes. J. Membr. Biol. 250, 393-406 (2016).
- Lata, S., Reichel, A., Brock, R., Tampe, R. & Piehler, J. High-affinity adaptors for switchable recognition of histidine-tagged proteins. J. Am. Chem. Soc. 127, 10205-10215 (2005).
- Mueller, T. D., Zhang, J. L., Sebald, W. & Duschl, A. Structure, binding, and antagonists in the IL-4/IL-13 receptor system. Biochim. Biophys. Acta. 1592, 237-250 (2002).
- Weidemann, T., Hofinger, S., Muller, K. & Auer, M. Beyond Dimer- ization: A Membrane-dependent Activation Model for Interleukin-4 Receptor-mediated Signalling. J. Mol. Biol. 366, 1365-1373 (2007).
- Mockl, L. et al. Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx. Dev. Cell. 50, 57-72 e56 (2019).
- Weinbaum, S., Tarbell, J. M. & Damiano, E. R. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9, 121-167 (2007).
- Teilum, K., Olsen, J. G. & Kragelund, B. B. Functional aspects of protein flexibility. Cell. Mol. Life. Sci. 66, 2231-2247 (2009).
- Pang, Y. P. Use of multiple picosecond high-mass molecular dynamics simulations to predict crystallographic B-factors of fol- ded globular proteins. Heliyon 2, e00161 (2016).
- Honig, B. & Nicholls, A. Classical electrostatics in biology and chemistry. Science 268, 1144-1149 (1995).
- Madura, J. D. et al. Electrostatics and Diffusion of Molecules in Solution -Simulations with the University-of-Houston Brownian Dynamics Program. Comput. Phys. Commun. 91, 57-95 (1995).
- Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical con- tinuum solvation models. Chem. Rev. 105, 2999-3093 (2005).
- Narumi, T., Yasuoka, K., Taiji, M. & Hofinger, S. Current Performance Gains From Utilizing the GPU or the ASIC MDGRAPE-3 Within an Enhanced Poisson Boltzmann Approach. J. Comput. Chem. 30, 2351-2357 (2009).
- Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic con- formational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789-796 (2009).
- Gasteiger, E., Edn. Springer Protocols Handbooks (Humana Press, 2005).
- Worch, R., Bökel, C., Höfinger, S., Schwille, P. & Weidemann, T. Focus on composition and interaction potential of single-pass transmembrane domains. Proteomics 10, 4196-4208 (2010).
- Weidemann, T. & Schwille, P. Dual-color fluorescence cross- correlation spectroscopy with continuous laser excitation in a confocal setup. Meth. Enzymol. 518, 43-70 (2013).
- Ulbrich, M. H. & Isacoff, E. Y. Subunit counting in membrane-bound proteins. Nat. Methods. 4, 319-321 (2007).
- Kapusta, P. in Application Note, PicoQuant GmbH (2010).
- Khmelinskaia, A., Mucksch, J., Petrov, E. P., Franquelim, H. G. & Schwille, P. Control of Membrane Binding and Diffusion of Cholesteryl-Modified DNA Origami Nanostructures by DNA Spacers. Langmuir 34, 14921-14931 (2018).
- Case, D.A. et al. AMBER 2020, University of California, San Fran- cisco (2020).
- Schaftenaar, G. MOLDEN a pre-and post processing program of molecular and electronic structure. https://www.theochem.ru.nl/ molden/ (2018).
- Frisch, M.J. et al., GAUSSIAN, Gaussian, Inc., Wallingford CT (2009).
- Jakalian, A., Jack, D. B. & Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23, 1623-1641 (2002).
- Maier, J. A. et al. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 11, 3696-3713 (2015).
- Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157-1174 (2004).
- Foley, B. L., Tessier, M. B. & Woods, R. J. Carbohydrate force fields. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 652-697 (2012).
- Joung, I. S. & Cheatham, T. E. 3rd Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 112, 9020-9041 (2008).
- Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of Simple Potential Functions for Simulat- ing Liquid Water. J. Chem. Phys. 79, 926-935 (1983).
- Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. Model. 14, 33-38 (1996).
- Ryckaert, J. P., Ciccotti, G. & Berendsen, H. J. C. Numerical- Integration of Cartesian Equations of Motion of a System with Constraints -Molecular-Dynamics of N-Alkanes. J. Comput. Phys. 23, 327-341 (1977).
- Le Grand, S., Gotz, A. W. & Walker, R. C. SPFP: Speed without compromise-A mixed precision model for GPU accelerated mole- cular dynamics simulations. Comput. Phys. Commun. 184, 374-380 (2013).
- Mahajan, R., Kranzlmuller, D., Volkert, J., Hansmann, U. H. & Hofin- ger, S. Computational assessment of the entropy of solvation of small-sized hydrophobic entities. Phys. Chem. Chem. Phys. 8, 5515-5521 (2006).
- Curutchet, C., Orozco, M., Luque, F. J., Mennucci, B. & Tomasi, J. Dispersion and repulsion contributions to the solvation free energy: comparison of quantum mechanical and classical approaches in the polarizable continuum model. J. Comput. Chem. 27, 1769-1780 (2006).
- Kar, P., Seel, M., Hansmann, U. H. & Hofinger, S. Dispersion terms and analysis of size-and charge dependence in an enhanced Poisson-Boltzmann approach. J. Phys. Chem. B. 111, 8910-8918 (2007).
- Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913-916 (2002).