Potential Impact of Fluopyram on the Frequency of the D123E Mutation in Alternaria solani (original) (raw)
Related papers
Potential Impact of Fluopyram on the Frequency of the D123E Mutation in Alternaria solani
Plant Disease
Succinate dehydrogenase-inhibiting (SDHI) fungicides have been widely applied in commercial potato (Solanum tuberosum L.) fields for the control of early blight, caused by Alternaria solani Sorauer. Five-point mutations on three AsSdh genes in A. solani have been identified as conferring resistance to SDHI fungicides. Recent work in our laboratory determined that A. solani isolates possessing the D123E mutation, or the substitution of aspartic acid for glutamic acid at position 123 in the AsSdhD gene, were collected at successively higher frequencies throughout a 3-year survey. In total, 118 A. solani isolates previously characterized as possessing the D123E mutation were evaluated in vitro for boscalid and fluopyram sensitivity. Over 80% of A. solani isolates with the D123E mutation evaluated were determined to be highly resistant to boscalid in vitro. However, effective concentration at which the fungal growth is inhibited by 50% values of isolates with the D123E mutation to fluop...
Mallik, I., Arabiat, S., Pasche, J. S., Bolton, M. D., Patel, J. S., and Gudmestad, N. C. 2014. Molecular characterization and detection of mutations associated with resistance to succinate dehydrogenase-inhibiting fungicides in Alternaria solani. Phytopathology 104:40-49.
Prevalence and Impact of SDHI Fungicide Resistance in Alternaria solani
Plant Disease, 2013
Early blight, caused by Alternaria solani, is an important chronic foliar disease of potato (Solanum tuberosum) present every growing season in the Midwestern United States. Most currently grown potato cultivars lack resistance to early blight; therefore, foliar fungicides are relied upon for disease management. Foliar fungicides with high efficacy against the pathogen, such as boscalid, frequently are used under high disease pressure situations, such as potatoes grown under overhead irrigation. Boscalid is a member of the succinate dehydrogenase inhibiting (SDHI) fungicide group and was registered for use on potato in 2005. Baseline sensitivity of A. solani to the SDHI fungicides boscalid, penthiopyrad, and fluopyram using a spore germination assay demonstrated similar intrinsic activity against A. solani with mean EC50 values of 0.33, 0.38, and 0.31 μg/ml, respectively. However, isolates varied in their sensitivity to each of these fungicides, resulting in very low correlations (r...
Prevalence and Impact of SDHI Fungicide Resistance in Alternaria solani
Plant Disease, 2013
Early blight, caused by Alternaria solani, is an important chronic foliar disease of potato (Solanum tuberosum) present every growing season in the Midwestern United States. Most currently grown potato cultivars lack resistance to early blight; therefore, foliar fungicides are relied upon for disease management. Foliar fungicides with high efficacy against the pathogen, such as boscalid, frequently are used under high disease pressure situations, such as potatoes grown under overhead irrigation. Boscalid is a member of the succinate dehydrogenase inhibiting (SDHI) fungicide group and was registered for use on potato in 2005. Baseline sensitivity of A. solani to the SDHI fungicides boscalid, penthiopyrad, and fluopyram using a spore germination assay demonstrated similar intrinsic activity against A. solani with mean EC 50 values of 0.33, 0.38, and 0.31 µg/ml, respectively. However, isolates varied in their sensitivity to each of these fungicides, resulting in very low correlations (r) among isolate sensitivity to each fungicide. Resistance to boscalid in A. solani was detected in the states of
European Journal of Plant Pathology
Early blight, caused by the fungus Alternaria solani, is a common foliar disease in potato. Quinone outside inhibitor (QoIs) fungicides have commonly been used against A. solani. To avoid or delay development of fungicide resistance it is recommended to alternate or combine fungicides with different modes of action. Therefore, we compared two different fungicide programs against early blight in field trials and studied within season changes in the pathogen population. An untreated control was compared with treatments using azoxystrobin alone and with a program involving difenoconazole followed by boscalid and pyraclostrobin combined. Isolates of A. solani were collected during the growing season and changes in the population structure was investigated. We also screened for the amino acid substitution in the cytochrome b gene and investigated changes in sensitivity to azoxystrobin. Treatment with azoxystrobin alone did not improve disease control in 2014 when the disease pressure was high. However, lower severity of the disease was observed after combined use of difenoconazole, boscalid and pyraclostrobin. The efficacy of both fungicide treatments were similar during the field trial in 2017. Two mitochondrial genotypes (GI and GII) were found among isolates, where all isolates, except two, were GII. All GII isolates had the F129 L substitution while the two GI isolates were wild type. Population structure analysis and principal component analysis (PCA) of amplified fragment length polymorphisms (AFLP) data revealed within season changes in the A. solani populations in response to fungicide application. Isolates with the F129 L substitution had reduced sensitivity to azoxystrobin in vitro and their sensitivity tended to decrease with time.
Plant Disease, 2016
Fonseka, D. L., and Gudmestad, N. C. 2016. Spatial and temporal sensitivity of Alternaria species associated with potato foliar diseases to demethylation inhibiting and anilino-pyrimidine fungicides. Plant Dis. 100:1848-1857. Early blight and brown spot, caused by Alternaria solani and Alternaria alternata, respectively, are important foliar diseases of potato, affecting both tuber yield and quality. Most of the commercial cultivars lack resistance; therefore, the application of foliar fungicides remains a primary disease management strategy. Baseline sensitivities of A. solani to difenoconazole and metconazole (demethylation inhibitors) using mycelial growth assay exhibited similar intrinsic activity against the pathogen with mean EC 50 (the effective concentration at which the fungal growth is inhibited by 50%) values of 0.09 mg/ml. However, the sensitivity of individual baseline A. solani isolates to each fungicide varied substantially, resulting in very low and nonsignificant correlation coefficients among fungicides. Mean EC 50 values for baseline A. alternata isolates in response to difenoconazole and metconazole were 0.14 and 0.26 mg/ml, respectively. The sensitivity of the majority of A. solani
Plant Disease, 2016
Early blight and brown spot, caused by Alternaria solani and Alternaria alternata, respectively, are important foliar diseases of potato, affecting both tuber yield and quality. Most of the commercial cultivars lack resistance; therefore, the application of foliar fungicides remains a primary disease management strategy. Baseline sensitivities of A. solani to difenoconazole and metconazole (demethylation inhibitors) using mycelial growth assay exhibited similar intrinsic activity against the pathogen with mean EC50 (the effective concentration at which the fungal growth is inhibited by 50%) values of 0.09 μg/ml. However, the sensitivity of individual baseline A. solani isolates to each fungicide varied substantially, resulting in very low and nonsignificant correlation coefficients among fungicides. Mean EC50 values for baseline A. alternata isolates in response to difenoconazole and metconazole were 0.14 and 0.26 μg/ml, respectively. The sensitivity of the majority of A. solani and...
Shift in Sensitivity of Alternaria solani in Response to QoI Fungicides
Plant Disease, 2004
Potato early blight occurs worldwide and is prevalent wherever potatoes are grown. Alternaria solani Sorauer has long been recognized as a foliar pathogen of potato (Solanum tuberosum L.) and is considered to be a difficult pathogen to control (3), largely because few cultivars possess resistance (2). The most effective early blight control measure is frequent application of protectant fungicides from early in the growing season until vine desiccation (12).