Causal Discovery in the Presence of Measurement Error: Identifiability Conditions (original) (raw)
2017, arXiv (Cornell University)
Measurement error in the observed values of the variables can greatly change the output of various causal discovery methods. This problem has received much attention in multiple fields, but it is not clear to what extent the causal model for the measurement-error-free variables can be identified in the presence of measurement error with unknown variance. In this paper, we study precise sufficient identifiability conditions for the measurement-errorfree causal model and show what information of the causal model can be recovered from observed data. In particular, we present two different sets of identifiability conditions, based on the second-order statistics and higher-order statistics of the data, respectively. The former was inspired by the relationship between the generating model of the measurement-errorcontaminated data and the factor analysis model, and the latter makes use of the identifiability result of the over-complete independent component analysis problem.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.