Nylon 6/CHITOSAN Nanofibrous Structures for Filtration (original) (raw)
Related papers
Polymers
Electrospun nanofiber membrane (NFM) has a high potential to be applied as a filter for produced water treatment due to its highly porous structure and great permeability. However, it faces fouling issues and has low mechanical properties, which reduces the performance and lifespan of the membrane. NFM has a low integrity and the fine mat easily detaches from the sheet. In this study, nylon 6,6 was selected as the polymer since it offers great hydrophilicity. In order to increase mechanical strength and separation performance of NFM, solvent vapor treatment was implemented where the vapor induces the fusion of fibers. The fabricated nylon 6,6 NFMs were treated with different exposure times of formic acid vapor. Results show that solvent vapor treatment helps to induce the fusion of overlapping fibers. The optimum exposure time for solvent vapor is 5 h to offer full retention of dispersed oil (100% of oil rejection), has 62% higher in tensile strength (1950 MPa) compared to untreated...
Chemical Industry and Chemical Engineering Quarterly, 2016
Due to their high filtration efficiency and low basis weight nanofibrous filters are suitable for filtration applications. The objective of this study was to investigate the effect of electrospinning parameters including polymer solution concentration (10-15 wt.%), applied voltage (15-25 kV) and tip-collector distance (7.5-12.5 cm) on the filtration efficiency of polyamide (PA) nanofibers. The morphology of the PA nanofibers was characterized using scanning electron microscope (SEM) analysis. The SEM image results indicated that the average fiber diameter of PA nanofibers was 220 nm at PA solution concentration of 12.5 wt.%, applied voltage of 20 kV, tip-collector distance of 10 cm, flow rate of 0.5 mL h-1, temperature of 25 ?C and humidity of 40%. The obtained results showed that the highest quality factor and efficiency of 7.02?10-2 Pa-1 and 96% were optimal parameters for nanofibrous filters during 30 and 240 min of electrospinning time, respectively. The presented study showed t...
Electrospun Poly(ethylene Terephthalate)/Silk Fibroin Composite for Filtration Application
Polymers
In this study, fibrous membranes from recycled-poly(ethylene terephthalate)/silk fibroin (r-PSF) were prepared by electrospinning for filtration applications. The effect of silk fibroin on morphology, fibers diameters, pores size, wettability, chemical structure, thermo-mechanical properties, filtration efficiency, filtration performance, and comfort properties such as air and water vapor permeability was investigated. The filtration efficiency (FE) and quality factor (Qf), which represents filtration performance, were calculated from penetration through the membranes using aerosol particles ranging from 120 nm to 2.46 μm. The fiber diameter influenced both FE and Qf. However, the basis weight of the membranes has an effect, especially on the FE. The prepared membranes were classified according to EN149, and the most effective was assigned to the class FFP1 and according to EN1822 to the class H13. The impact of silk fibroin on the air permeability was assessed. Furthermore, the ant...
Production and analysis of electrospun PA 6,6 and PVA nanofibrous surfaces for filtration
Industria Textila, 2021
Electrospun nanofibrous surfaces were produced by using two different polymers (PA 6,6 and PVA) at three different levels of polymer feeding rate (0.2, 0.6 and 1.0 ml/h, respectively) and three different levels of production time in electrospinning (5, 10 and 15 minutes, respectively) and the effect of polymer type, polymer feeding rate and production time was determined by analyzing unit weight and thickness of the nanofibrous membranes as well as fibre fineness and pore size distributions. The results showed that much finer fibres were produced by PA 6,6 polymer compare to PVA. The minimum average fibre fineness was 150.96 nm (by PA 6,6 polymer; 0.2 ml/h; 5 min.) while maximum fibre fineness was 243.43 nm (by PVA polymer; 0.6 ml/h; 15 min.). Similarly, the pore sizes of nanofibrous surfaces produced by PA 6,6 were smaller compare to the ones produced by PVA polymer. The results also indicated that coarser fibres were produced as the polymer feed rate and electrospinning time incre...
Optimization of Electrospinning Parameters for Chitosan Nanofibres
Current Nanoscience, 2011
The present study aimed to optimize the electrospinning parameters for polyacrylonitrile (PAN) nanofibers containing MgO nanoparticle to obtain the appropriate fiber diameter and mat porosity to be applied in air filtration. Optimization of applied voltage, solution concentration, and spinning distance was performed using response surface methodology. In total, 15 trials were done according to the prepared study design. Fiber diameter and porosity were measured using scanning electron microscopic (SEM) image analysis. For air filtration testing, the nanofiber mat was produced based on the suggested optimum conditions for electrospinning. According to the results, the lower solution concentration favored the thinner fiber. The larger diameter gave a higher porosity. At a given spinning distance, there was a negative correlation between fiber diameter and applied voltage. Moreover, there were curvilinear relationships between porosity and both spinning distance and applied voltage at any concentration. It was also concluded that the developed filter medium could be comparable to the high-efficiency particulate air (HEPA) filter in terms of collection efficiency and pressure drop. The empirical models presented in this study can provide an orientation to the subsequent experiments to form uniform and continuous nanofibers for future application in air purification. Implications: High-efficiency filtration is becoming more important, due to decreasing trends air quality. Effective filter media are increasingly needed in industries applying clean-air technologies, and the necessity for developing the high-performance air filters has been more and more felt. Nanofibrous filter media that are mostly fabricated via electrospinning technique have attracted considerable attention in the last decade. The present study aimed to develop the electrospun PAN-containing MgO nanoparticle (using the special functionalities such as absorption and adsorption characteristics, antibacterial functionality, and as a pore-forming agent) filter medium through experimental investigations for application in high-performance air filters.
Water Treatment using Electrospun PVC/PVP Nanofibers as Filter Medium
International Journal of Material Science and Research, 2018
One of the prevailing problems afflicting everybody globally is the scarcity of clean and portable water supply. Water crisis constitutes a major issue to present status of world's water resources. Water pollution is now becoming a critical issue globally. Water filtration/purification with the latest technology is the urgent need in today's economy. Electrospun nanofibers with high filtration efficiency, small pore size, high permeability and low cost are materials of choice for many filtration applications. These outstanding properties are most suitable for filtration media. In this study, Polyvinyl chloride (PVC) was dissolved in N, N-Dimethylacetamide (DMAC) and the small weight percentages of Polyvinylpyrrolidone (PVP) was added in order to make the nanoporous membrane surface hydrophilic for escalating the filtration performance rate and stainability. Two different water samples (dam water and city wastewater) were used in this study. For dam water sample, the parameter such as, PH, turbidity, TDS, conductivity, Ca++, Mg++, hardness, sulfates, nitrates, fluoride, chloride, alkalinity and silica were measured and found out to be 7.5, 24.
Initial testing of electrospun nanofibre filters in water filtration applications
Water SA, 2010
The aim of this study was to evaluate the use of nanofibre microfiltration membranes, spun by an innovative electrospinning technique, in water filtration applications. As such, this study bridges the gap between developments in electrospinning techniques for the production of flat-sheet membranes and the application of these membranes in water filtration. Three different applications were examined. Firstly, the use of the membrane (functionalised or non-functionalised) for the removal of pathogens was investigated. Secondly, the electrospun flat-sheet membranes were applied for wastewater treatment in a laboratory-scale submerged membrane bioreactor (MBR). In addition to these applications, physical properties such as clean water permeability (CWP) and strength were also examined. The tests showed that the electrospun membranes can be used for water filtration applications, but that further improvements are necessary before these membranes can be practically employed. In particular, the level of functionality and the properties of irreversible fouling require further research.
The chitosan-based electrospun nanofibrous composite membrane (ENCM) was fabricated based on electro-spinning of a high performance chitosan (CS) /Poly vinyl alcohol (PVA) mat on a polyethylene terephthalate (PET) non-woven. Structural stability (i.e. water resistance and chemical resistance against acidic and basic solutions) of the nanofibrous layer was improved and confirmed by FT-IR, SEM, degree of stability and solu-bility tests. Also, performance improvement of the ENCMs through assessment of structural uniformity and interfacial stability of the nanofibrous layer onto the substrate was deduced. Plasma pre-treatment of the substrate and area–weight optimization was adopted to provide interfacial stability and structural uniformity of the nanofibrous layer, respectively. High-values of filtration characteristics (flux, permeability and anti-fouling) along with significant breakthrough volumes for solutions of Cu(II) and Ni(II) ions in dynamic adsorption studies suggest that the innovative structural characteristics of the improved ENCMs are capable of developing as a highly efficient filtration.
Recycling of Direct Dyes Wastewater by Nylon-6 Nanofibrous Membrane
Current Nanoscience, 2011
ABSTRACT Textile processing industry generally requires significant amounts of process water for cleaning, rinsing, and dyeing purposes and therefore releases significant amounts of dye polluted waste streams into the environment. In recent years considerable attempts have been made to remove pollutants from these waste streams. One of the promising methods in this regard is membrane filtration. Utilizing this separation method would necessitate the manufacture of effective membranes, such as nanofibrous membranes. Electrospinning is a relatively simple method to produce nanofibers from solutions of different polymers and polymer blends. This paper presents the results of a research on manufacturing a membrane filter by electrospinning Nylon-6 nanofibers on a carbon coated polyurethane substrate and implementing this membrane for dye removal in a filtration system. The membrane sample contained nanofibers with an average diameter of 211 nm. Experiments were run with C.I. Direct yellow 12 as a typical dye pollutant. The effect of coating time, transmembrane pressure, and two different pretreatment methods were investigated and it was observed that by the application of 150ppm coagulant material at 0.75 bar pressure, a filtration efficiency of 98% was achieved.