Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell (original) (raw)

Comparing Multiple Exciton Generation in Quantum Dots To Impact Ionization in Bulk Semiconductors: Implications for Enhancement of Solar Energy Conversion

Nano Letters, 2010

Multiple exciton generation (MEG) in quantum dots (QDs) and impact ionization (II) in bulk semiconductors are processes that describe producing more than one electron-hole pair per absorbed photon. We derive expressions for the proper way to compare MEG in QDs with II in bulk semiconductors and argue that there are important differences in the photophysics between bulk semiconductors and QDs. Our analysis demonstrates that the fundamental unit of energy required to produce each electron-hole pair in a given QD is the band gap energy. We find that the efficiency of the multiplication process increases by at least 2 in PbSe QDs compared to bulk PbSe, while the competition between cooling and multiplication favors multiplication by a factor of 3 in QDs. We also demonstrate that power conversion efficiencies in QD solar cells exhibiting MEG can greatly exceed conversion efficiencies of their bulk counterparts, especially if the MEG threshold energy can be reduced toward twice the QD band gap energy, which requires a further increase in the MEG efficiency. Finally, we discuss the research challenges associated with achieving the maximum benefit of MEG in solar energy conversion since we show the threshold and efficiency are mathematically related.

Optical characterization and modeling of the lead chalcogenide quantum dot solar cell: A rational approach to device development and multiple exciton generation

2010 35th IEEE Photovoltaic Specialists Conference, 2010

We determine the internal quantum efficiency (IQE) of the active layer of PbSe nanocrystal (NC) back-contact Schottky solar cells by combining external quantum efficiency (EQE) and total reflectance measurements with an optical model of the device stack. The model is parametrized with the complex index of refraction of each layer in the stack as calculated from ellipsometry data. Good agreement between the experimental and modeled reflectance spectra permits a quantitative estimate of the fraction of incident light absorbed by the NC films at each wavelength, thereby yielding well-constrained QE spectra for photons absorbed only by the NCs. Using a series of devices fabricated from 5.1 ( 0.4 nm diameter PbSe NCs, we show that thin NC cells achieve an EQE and an active layer IQE as high as 60 ( 5% and 80 ( 7%, respectively, while the QE of devices with NC layers thicker than about 150 nm falls, particularly in the blue, because of progressively greater light absorption in the field-free region of the films and enhanced recombination overall. Our results demonstrate that interference effects must be taken into account in order to calculate accurate optical generation profiles and IQE spectra for these thin film solar cells. The mixed modeling/experimental approach described here is a rigorous and powerful way to determine if multiple exciton generation (MEG) photocurrent is collected by devices with EQE < 100%. On the basis of the magnitudes and shapes of the IQE spectra, we conclude that the 1,2-ethanedithiol treated NC devices studied here do not produce appreciable MEG photocurrent.

Carrier multiplication and exciton behavior in PbSe quantum dots

2010

Knowledge of excited electronic states in semiconductor quantum dots (QDs) is of fundamental scientific interest and is important for application in lasers, optical detectors, LEDs, solar cells, photocatalysis, biomedical imaging, photodynamic therapy etc. In the past few years, carrier multiplication (CM) in QDs has received particular attention, due to promising prospects for exploitation in highly efficient solar cells, photodetectors and possibly photocatalysis. CM can occur when absorption of a high-energy photon leads to production of an excited electron or a hole with an excess energy that exceeds the QD band gap. CM involves transfer of (part of) the excess energy of the excited electron or hole to one or more valence electrons that also become excited across the band gap via a process denoted as impact ionization. In this way absorption of a single photon can lead to excitation of two or more electrons. This thesis describes studies of factors affecting the efficiency of CM...

Quantum Dot Solar Cells: High Efficiency through Multiple Exciton Generation

2005

Impact ionization is a process in which absorbed photons in semiconductors that are at least twice the bandgap can produce multiple electron-hole pairs. For single-bandgap photovoltaic devices, this effect produces greatly enhanced theoretical thermodynamic conversion efficiencies that range from 45-85%, depending upon solar concentration, the cell temperature, and the number of electron-hole pairs produced per photon. For quantum dots (QDs), electron-hole pairs exist as excitons. We have observed astoundingly efficient multiple exciton generation (MEG) in QDs of PbSe (bulk Eg = 0.28 eV), ranging in diameter from 3.9 to 5.7nm (Eg = 0.73, 0.82, and 0.91 eV, respectively). The effective masses of electron and holes are about equal in PbSe, and the onset for efficient MEG occurs at about three times the QD HOMO-LUMO transition (its ''bandgap''). The quantum yield rises quickly after the onset and reaches 300% at 4 x Eg (3.64 eV) for the smallest QD; this means that ...

Assessment of carrier-multiplication efficiency in bulk PbSe and PbS

Nature Physics, 2009

One of the important factors limiting solar-cell efficiency is that incident photons generate one electron-hole pair, irrespective of the photon energy. Any excess photon energy is lost as heat. The possible generation of multiple charge carriers per photon (carrier multiplication) is therefore of great interest for future solar cells 1 . Carrier multiplication is known to occur in bulk semiconductors, but has been thought to be enhanced significantly in nanocrystalline materials such as quantum dots, owing to their discrete energy levels and enhanced Coulomb interactions 1-3 . Contrary to this expectation, we demonstrate here that, for a given photon energy, carrier multiplication occurs more efficiently in bulk PbS and PbSe than in quantum dots of the same materials. Measured carriermultiplication efficiencies in bulk materials are reproduced quantitatively using tight-binding calculations, which indicate that the reduced carrier-multiplication efficiency in quantum dots can be ascribed to the reduced density of states in these structures.

Multiple Exciton Generation in Films of Electronically Coupled PbSe Quantum Dots

Nano Letters, 2007

We study multiple exciton generation (MEG) in electronically coupled films of PbSe quantum dots (QDs) employing ultrafast time-resolved transient absorption spectroscopy. We demonstrate that the MEG efficiency in PbSe does not decrease when the QDs are treated with hydrazine, which has been shown to greatly enhance carrier transport in PbSe QD films by decreasing the interdot distance. The quantum yield is measured and compared to previously reported values for electronically isolated QDs suspended in organic solvents at ∼4 and 4.5 times the effective band gap. A slightly modified analysis is applied to extract the MEG efficiency and the absorption cross section of each sample at the pump wavelength. We compare the absorption cross sections of our samples to that of bulk PbSe. We find that both the biexciton lifetime and the absorption cross section increase in films relative to isolated QDs in solution.

Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence

Physical Review B, 2008

We report here an assessment of carrier multiplication (CM) yields in PbSe and PbS nanocrystals (NCs) by a quantitative analysis of biexciton and exciton dynamics in transient photoluminescence decays. Interest in CM, the generation of more than one electron and hole in a semiconductor after absorption of one photon, has renewed in recent years because of reports suggesting greatly increased efficiencies in nanocrystalline materials compared to the bulk form, in which CM was otherwise too weak to be of consequence in photovoltaic energy conversion devices. In our PbSe and PbS NC samples, however, we estimate using transient photoluminescence that at most 0.25 additional eh pairs are generated per photon even at energies ω > 5Eg, instead of the much higher values reported in the literature. We argue by comparing NC CM estimates and reported bulk values on an absolute energy basis, which we justify as appropriate on physical grounds, that the data reported thus far are inconclusive with respect to the importance of nanoscale-specific phenomena in the CM process.

Multiple exciton generation in PbSe nanorods

Physics, Simulation, and Photonic Engineering of Photovoltaic Devices, 2012

While multiple exciton generation (MEG) is known to occur more efficiently in semiconductor nanocrystals than in the bulk, the required energy threshold prevents visible photons from being utilized. We report two-color pump-probe measurements demonstrating a two-fold increase in the MEG efficiency of solution samples of PbSe quasi onedimensional nanorods over zero-dimensional nanocrystals to a value of 0.78, where 1 is the largest efficiency possible. This improvement is accompanied by a reduction of the MEG threshold energy to 2.28E g , which allows visible photons to participate in MEG. This approaches the theoretical limit for the threshold energy of 2E g imposed by energy conservation. Detailed balance calculations show that, unlike nanocrystals, photovoltaic cells based on PbSe nanorods can use MEG to improve power conversion efficiencies, particularly when used in conjunction with solar concentrators.

Generating Free Charges by Carrier Multiplication in Quantum Dots for Highly Efficient Photovoltaics

Accounts of Chemical Research, 2015

In a conventional photovoltaic device (solar cell or photodiode) photons are absorbed in a bulk semiconductor layer, leading to excitation of an electron from a valence band to a conduction band. Directly after photoexcitation, the hole in the valence band and the electron in the conduction band have excess energy given by the difference between the photon energy and the semiconductor band gap. In a bulk semiconductor, the initially hot charges rapidly lose their excess energy as heat. This heat loss is the main reason that the theoretical efficiency of a conventional solar cell is limited to the Shockley−Queisser limit of ∼33%. The efficiency of a photovoltaic device can be increased if the excess energy is utilized to excite additional electrons across the band gap. A sufficiently hot charge can produce an electron−hole pair by Coulomb scattering on a valence electron. This process of carrier multiplication (CM) leads to formation of two or more electron−hole pairs for the absorption of one photon. In bulk semiconductors such as silicon, the energetic threshold for CM is too high to be of practical use. However, CM in nanometer sized semiconductor quantum dots (QDs) offers prospects for exploitation in photovoltaics. CM leads to formation of two or more electron−hole pairs that are initially in close proximity. For photovoltaic applications, these charges must escape from recombination. This Account outlines our recent progress in the generation of free mobile charges that result from CM in QDs. Studies of charge carrier photogeneration and mobility were carried out using (ultrafast) time-resolved laser techniques with optical or ac conductivity detection. We found that charges can be extracted from photoexcited PbS QDs by bringing them into contact with organic electron and hole accepting materials. However, charge localization on the QD produces a strong Coulomb attraction to its counter charge in the organic material. This limits the production of free charges that can contribute to the photocurrent in a device. We show that free mobile charges can be efficiently produced via CM in solids of strongly coupled PbSe QDs. Strong electronic coupling between the QDs resulted in a charge carrier mobility of the order of 1 cm 2 V −1 s −1. This mobility is sufficiently high so that virtually all electron−hole pairs escape from recombination. The impact of temperature on the CM efficiency in PbSe QD solids was also studied. We inferred that temperature has no observable effect on the rate of cooling of hot charges nor on the CM rate. We conclude that exploitation of CM requires that charges have sufficiently high mobility to escape from recombination. The contribution of CM to the efficiency of photovoltaic devices can be further enhanced by an increase of the CM efficiency above the energetic threshold of twice the band gap. For large-scale applications in photovoltaic devices, it is important to develop abundant and nontoxic materials that exhibit efficient CM.