Faculty of 1000 evaluation for High-speed odor transduction and pulse tracking by insect olfactory receptor neurons (original) (raw)

High-speed odor transduction and pulse tracking by insect olfactory receptor neurons

Sensory systems encode both the static quality of a stimulus (e.g., color or shape) and its kinetics (e.g., speed and direction). The limits with which stimulus kinetics can be resolved are well understood in vision, audition, and somatosensation. However, the maximum temporal resolution of olfactory systems has not been accurately determined. Here, we probe the limits of temporal resolution in insect olfaction by delivering high frequency odor pulses and measuring sensory responses in the antennae. We show that transduction times and pulse tracking capabilities of olfactory receptor neurons are faster than previously reported. Once an odorant arrives at the boundary layer of the antenna, odor transduction can occur within less than 2 ms and fluctuating odor stimuli can be resolved at frequencies more than 100 Hz. Thus, insect olfactory receptor neurons can track stimuli of very short duration, as occur when their antennae encounter narrow filaments in an odor plume. These results provide a new upper bound to the kinetics of odor tracking in insect olfactory receptor neurons and to the latency of initial transduction events in olfaction.

Odour Sensing by Insect Olfactory Receptor Neurons: Measurements of Odours Based on Action Potential Analysis

2004

This thesis is a study of the odour responses of insect olfactory (or odorant) receptor neurons (ORN) of blowfly (Calliphora vicina), mosquito (Aedes communis), fruitflies (Drosophila melanogaster and D. virilis) and large pine weevil (Hylobius abietis). A power-law dependence (similar to Stevens' law in psychophysics) was obtained for the action potential rate of ORN responses vs. odour concentration in measurements with metal microelectrodes from blowfly ORNs and an analysis system was developed for the extracellularily recorded action potentials (or nerve pulses).

Electrophysiological Measurements from a Moth Olfactory System

Journal of Visualized Experiments, 2011

Insect olfactory systems provide unique opportunities for recording odorant-induced responses in the forms of electroantennograms (EAG) and single sensillum recordings (SSR), which are summed responses from all odorant receptor neurons (ORNs) located on the antenna and from those housed in individual sensilla, respectively. These approaches have been exploited for getting a better understanding of insect chemical communication. The identified stimuli can then be used as either attractants or repellents in management strategies for insect pests.