An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc (original) (raw)
Related papers
SN applied sciences, 2022
This review presents the current developments of various electrolyte systems for secondary zinc air batteries (SZABs). The challenges and advancements in aqueous electrolytes (e.g., alkaline, acidic and neutral) and non-aqueous electrolytes (e.g., solid polymer electrolyte, ionic liquids, gel polymer electrolyte, and deep eutectic solvents) development have been reviewed. Moreover, chemical and physical characteristics of electrolytes such as power density, capacity, rate performance, cyclic ability, and safety that play a vital role in recital of the SZABs have been reviewed. Finally, the challenges and limitations that must be investigated and possible future research areas of SZABs electrolytes are discussed. Highlights • Design and working mechanisms of rechargeable zinc air batteries. • Investigation of various electrolyte systems for rechargeable zinc air batteries. • Advances in the electrolyte technologies and stable electrolytes for rechargeable zinc air batteries.
Mechanism and Optimizations of Aqueous Zinc-ion Battery
Highlights in Science, Engineering and Technology
Nowadays, more and more problems of environmental deterioration make the development of environmentally friendly energy imminent. For the requirements of low cost, high security, and high efficiency, aqueous Zn-ion batteries are a promising trend for research. In this paper, the mechanism of aqueous Zn-ion batteries will be illustrated in three aspects: cathode materials, zinc anode, and electrolytes. Moreover, possible alternatives for each part of the batteries will be comprehensively illustrated in detail. In addition, the challenges such as short capacity, zinc dendrites, and corrosion and passivation will be analyzed and the possible corresponding solutions will be proposed. Finally, a concise conclusion will be given.
Batteries, 2018
The commercialization of rechargeable alkaline zinc–air batteries (ZAB) requires advanced approaches to improve secondary zinc anode performance, which is hindered by the high corrosion and dissolution rate of zinc in this medium. Modified (with additives) alkaline electrolyte has been one of the most investigated options to reduce the high solubility of zinc. However, this strategy alone has not been fully successful in enhancing the cycle life of the battery. The combination of mitigation strategies into one joint approach, by using additives (ZnO, KF, K2CO3) in the base alkaline electrolyte and simultaneously preparing zinc electrodes that are based on ionomer (Nafion®)-coated zinc particles, was implemented and evaluated. The joint use of electrolyte additives and ionomer coating was intended to regulate the exposition of Zn, deal with zincate solubility, minimize the shape change and dendrite formation, as well as reduce the hydrogen evolution rate. This strategy provided a ben...
Insights into zinc-air battery technological advancements
Renewable and Sustainable Energy Reviews, 2024
This review combines a scientometric analysis with a detailed overview of zinc-air battery (ZAB) advances. The ZAB research landscape was critically surveyed using scientometric tools like VOSviewer and Biblioshiny. This analysis covered 10,103 articles from the Web of Science database, revealing the growth evolution, citation analysis, research clusters, and countries' collaboration networks in ZAB research. The results reveal a remarkable annual growth rate of 11.5 %, indicating a major rise in academic interest that invariably highlights ZAB's growing relevance. The leading countries in terms of research productivity include China, the United States, South Korea, Japan, and Australia. Furthermore, the study identifies eight research clusters focusing on electrode optimization, advanced catalysis, electrochemical performance, hydrogen evolution, and the use of biomass and carbon materials, representing the critical areas of investigation in ZABs research. Importantly, the study critically reviewed essential electrochemical mechanisms governing ZABs and also provided novel perspectives on addressing the existing challenges and the mitigating strategies of ZAB components. This research serves as a helpful reference for industry professionals and policymakers looking to push the frontiers of renewable energy technology. Interestingly, the analysis is relevant to global efforts to promote sustainable energy solutions, supporting the United Nations Sustainable Development Goals and providing avenues to improve ZAB technology for greater integration into current energy systems. This study makes substantial contributions to ZAB research by outlining a path for future advancements and regulatory frameworks.
Designing Aqueous Organic Electrolytes for Zinc–Air Batteries: Method, Simulation, and Validation
Advanced Energy Materials
Aqueous zinc-air batteries (ZABs) are a low-cost, safe, and sustainable technology for stationary energy storage. ZABs with pH-buffered near-neutral electrolytes have the potential for longer lifetime compared to traditional alkaline ZABs due to the slower absorption of carbonates at nonalkaline pH values. However, existing near-neutral electrolytes often contain halide salts, which are corrosive and threaten the precipitation of ZnO as the dominant discharge product. This paper presents a method for designing halide-free aqueous ZAB electrolytes using thermodynamic descriptors to computationally screen components. The dynamic performance of a ZAB with one possible halide-free aqueous electrolyte based on organic salts is simulated using an advanced method of continuum modeling, and the results are validated by experiments. XRD, SEM, and EDS measurements of Zn electrodes show that ZnO is the dominant discharge product, and operando pH measurements confirm the stability of the electrolyte pH during cell cycling. Long-term full cell cycling tests are performed, and RRDE measurements elucidate the mechanism of ORR and OER. Our analysis shows that aqueous electrolytes containing organic salts could be a promising field of research for zinc-based batteries, due to their Zn 2+ chelating and pH buffering properties. We discuss the remaining challenges including the electrochemical stability of the electrolyte components.
Materials science aspects of zinc–air batteries: a review
Metal-air batteries are becoming of particular interest, from both fundamental and industrial viewpoints, for their high specific energy density compared to other energy storage devices, in particular the Li-ion systems. Among metal-air batteries, the zinc-air option represents a safe, environmentally friendly and potentially cheap and simple way to store and deliver electrical energy for both portable and stationary devices as well as for electric vehicles. Zinc-air batteries can be classified into primary (including also the mechanically rechargeable), electrically rechargeable (secondary), and fuel cells. Research on primary zinc-air batteries is well consolidated since many years. On the contrary, research on the electrically rechargeable ones still requires further efforts to overcome materials science and electrochemical issues related to charge and discharge processes. In addition, zinc-air fuel cells are also of great potential interest for smart grid energy storage and production. This review aims to report on the latest progresses and state-of-the-art of primary, secondary and mechanically rechargeable zinc-air batteries, and zinc-air fuel cells. In particular, this review focuses on the critical aspects of materials science, engineering, electrochemistry and mathematical modeling related to all zinc-air systems.