Palaeohistology and palaeopatology of an Aeolosaurini (Sauropoda: Titanosauria) from Morro do Cambambe (Upper Cretaceous, Brazil) (original) (raw)

Abstract

A recent publication of fossil bones of titanosaurs assigned to Aeolosaurini from the Morro do Cambambe site (Mato Grosso state, Brazil, Upper Cretaceous) reported anomalous growth in some of them. Here, we present osteohistological sections of elements to understand not only the microstructure and growth of such bones, but also the nature of those anomalies. Among them, we selected one cervical and one mediumposterior dorsal rib, and a haemal arch. The primary bone of all specimens consisted of a variation of the fibrolamellar complex, with the inner cortex being rich in woven bone En una reciente publicación de los huesos fósiles de titanosaurios asignados al clado Aeolosaurini provenientes del yacimiento de Morro do Cambambe (estado de Mato Grosso, Brasil, Cretácico Superior), se reconocieron anormalidades en el crecimiento de algunos de ellos. En el presente trabajo presentamos cortes osteohistológicos de elementos para entender no sólo la microestructura y crecimiento de los mismos, sino también la naturaleza de aquellas anomalías. Entre ellos, seleccionamos una costilla cervical y una costilla dorsal media posterior, así como un arco hemal. El hueso BRUM, BANDEIRA, HOLGADO, SOUZA, PÊGAS, SAYÃO, CAMPOS & KELLNER with dispersed longitudinal canals, while the outer cortex was parallel-fibred with rows of longitudinal canals, interlayered by Lines of Arrested Growth. We identified a maximum of two Lines of Arrested Growth in the cervical rib and haemal arch, and four in the dorsal rib. The haemal arch shows an External Fundamental System in most sections. The advanced remodelling and variation of the fibrolamellar bone in the cortex suggests that all the specimens represent individuals that reached sexual maturity. However, the haemal arch was distinct due to the wide distribution of External Fundamental System. Based on the microstructure, we identified a subadult semaphoront, and probably an adult. The dorsal rib exhibited periosteal and endosteal outgrowth. Such microstructure was assigned to a reactive bone due to an intra-thoracic infection (a pneumonia, probably related to a tuberculosis), which is the first report in a non-avian dinosaur. The microstructure resembles the medullary bone recovered in dinosaurs, which suggests that further studies of medullary bone in thoracic bones should also regard the pathological cases.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (43)

  1. Anné, J., Garwood, R.J., Lowe, T., Withers, P.J. & Manning, P.L. 2015. Interpreting pathologies in extant and extinct archosaurs using micro-CT. PeerJ, 3, e1130; doi: 10.7717/ peerj.1130.
  2. Anson, C., Rothschild, B. & Naples, V. 2012. Soft tissue contributions to pseudopathology of ribs. Advances in Anthropology, 2, 57-63; doi: 10.4236/aa.2012.22007.
  3. Aureliano, T., Ghilardi, A.M., Buck, P.V., Fabbri, M., Samathi, A., Delcourt, R., Fernandes, M.A. & Sander, M. 2018. Semi-aquatic adaptations in a spinosaur from the Lower Cretaceous of Brazil. Cretaceous Research, 90, 283-295; doi: 10.1016/j.cretres.2018.04.024.
  4. Bandeira, K.L.N., Simbras, F.M., Machado, E.B., Campos, D.D.A., Oliveira, G.R. & Kellner, A.W.A. 2016. A New Giant Titanosauria (Dinosauria: Sauropoda ) from the Late Cretaceous Bauru Group. PLoS One, 11(10), e0163373; doi: 10.1371/journal.pone.0163373.
  5. Bandeira, K.L.N., Machado, E.B., Campos, D.A. & Kellner, A.W.A. 2019. New Titanosaur (Sauropoda, Dinosauria) records from the Morro do Cambambe Unit (Upper Cretaceous), Mato Grosso State, Brazil. Cretaceous Research, 103, 104155; doi: 10.1016/j.cretres.2019.06.001.
  6. Barbosa, F.H.S., Pereira, P.V.L.G.C., Bergqvist, L.P. & Rothschild, B.M. 2016. Multiple neoplasms in a single sauropod dinosaur from the Upper Cretaceous of Brazil. Cretaceous Research, 62, 13-17; doi: 10.1016/j. cretres.2016.01.010.
  7. Barbosa, F.H.S., Ribeiro, I.C., Pereira, P.V.L.G.C. & Bergqvist, L.P. 2018. Vertebral lesions in a titanosaurian dinosaur from the Early-Late Cretaceous of Brazil. Geobios, 51, 385-389; doi: 10.1016/j.geobios.2018.08.002.
  8. Barbosa, F.H.S., Marinho, T.S., Iori, F.V. & Paschoa, L.S. 2019. A case of infection in na Aeolosaurini (Sauropoda) dinosaur from the Upper Cretaceous of São Paulo, southeastern Brazil, and the impact on its life. Cretaceous Research, 96, 1-5; doi: 10.1016/j.cretres.2018.12.004.
  9. Bell, D.J. & Campbell, J.G. 1961. Pathological and biochemical observations on virus-induced osteopetrosis gallinarum. Journal of Comparative Pathology and Therapeutics, 71, 85-93; doi: 10.1016/S0368- 1742(61)80011-8.
  10. Brusatte, S.L., Candeiro, C.R.A. & Simbras, F.M. 2017. The last dinosaurs of Brazil: the Bauru Group and its implications for the end-Cretaceous mass extinction. Anais da Academia Brasileira de Ciências, 89, 1465- 1485; doi: 10.1590/0001-3765201720160918.
  11. Calvo, J.O. & González Riga, B. 2019. Baalsaurus mansillai gen. et sp. nov. a new titanosaurian sauropod (Late Cretaceous) from Neuquén, Patagonia, Argentina. Anais da Academia Brasileira de Ciências, 91(Suppl.
  12. e20180061; doi: 10.1590/0001-3765201820180661
  13. Canoville, A., Schweitzer, M.H. & Zanno, L.E. 2019. Systemic distribution of medullary bone in the avian skeleton: ground truthing criteria for the identification of reproductive tissues in extinct Avemetatarsalia. BMC Evolutionary Biology, 19, 1-20; doi: 10.1186/s12862- 019-1402-7.
  14. Carballido J.L., Pol D., Otero A., Cerda I.A., Salgado L., Garrido A. C., Ramezani J., Cúneo N.R. & Krause J.M. 2017. A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs. Proceedings of the Royal Society B, 284, 20171219; doi: 10.1098/ rspb.2017.1219.
  15. Castenet, J., Curry Rogers, K., Cubo, J. & Boisard, J.J. 2000. Periosteal bone growth rates in extant ratites (ostriche and emu). Comptes Rendus de l'Academie des Sciences, Serie III, Sciences de la Vie, 323, 543-550; doi: 10.1016/ s0764-4469(00)00181-5.
  16. Cerda, I.A., Chinsamy, A. & Pol, D. 2014. Unusual endosteally formed bone tissue in a patagonian basal sauropodomorph dinosaur. The Anatomical Record, 297, 1385-1391; doi: 10.1002/ar.22954.
  17. Chinsamy, A. & Raath, M. A. 1992. Preparation of fossil bone for histological examination. Palaeontologia Africana, 29, 39-44.
  18. Chinsamy, A. & Tumarkin-Deratzian, A. 2009. Pathologic bone tissues in a turkey vulture and a nonavian dinosaur: implications for interpreting endosteal bone and radial fibrolamellar bone in fossil dinosaurs. The Anatomical Record, 292, 1478-1484; doi: 10.1002/ar.20991. Chinsamy-Turan, A. 2005. The Microstructure of Dinosaurs Bone: Deciphering Biology with Fine Scale Techniques. The Johns Hopkins University Press, Maryland.
  19. Christian, A. & Dzemski, G. 2007. Reconstruction of the cervical skeleton posture of Brachiosaurus brancai Janensch, 1914 by an analysis of the intervertebral stress along the neck and a comparison with the results of different approaches. Fossil Record, 10, 38-49; doi: 10.1002/mmng.200600017.
  20. Converse, K.A. 2007. Avian tuberculosis. In: Infectious Diseases of Wild Birds (eds. Thomas, N.J., Hunter, D.B. & Atkinson, C.T.). Blackwell Publishing, Ames, Iowa, 289-302.
  21. de Margerie, E. 2004. Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). Journal of Experimental Biology, 207, 869-879; doi: 10.1242/jeb.00841.
  22. de Margerie, E., Cubo, J. & Castanet, J. 2002. Bone typology and growth rate: testing and quantifying 'Amprino's rule' in the mallard (Anas platyrhynchos). Comptes Rendus Biologies, 325, 221-230; doi: 10.1016/S1631- 0691(02)01429-4.
  23. Erickson, G.M. & Tumanova, T.A. 2000. Growth curve of Psittacosaurus mongoliensis Osborn (Ceratopsia: Psittacosauridae) inferred from long bone histology. Zoological Journal of the Linnean Society, 130, 551-566; doi: 10.1006/zjls.2000.0243.
  24. Francillon-Vieillot, H., de Buffrénil, V., Castenet, J., Geraudie, J., Meunier, F.J., Sire, J.-Y., Zylberberg, I. & de Ricqlès, A. 1990. Microstructure and mineralization of vertebrate skeletal tissues. In: Skeletal Biomineralization Patterns, Processes and Evolutionary Trends (ed. Carter, J.G.). Van Nostrand Reinhold Company, New York, 471-548.
  25. Franco-Rosas, A.C., Salgado, L., Rosas, C.F. & Carvalho, I.S. 2004. Nuevos materiales de titanosaurios (Sauropoda) en el Cretácico Superior de Mato Grosso, Brasil. Revista Brasileira de Paleontologia, 7, 329-336; doi: 10.4072/ rbp.2004.3.04.
  26. Frank, R.M.I. & Franklin, R.M. 1982. Electron microscopy of avian osteopetrosis induced by retrovirus MAV.2-O. Calcified Tissue International, 34, 382-390; doi: 0171- 967X/82/0034-0382.
  27. Gallina, P.A. 2012. Histología ósea del titanosaurio Bonitasaura salgadoi (Dinosauria: Sauropoda) del Cretácico Superior de Patagonia. Ameghiniana, 49, 289-302; doi: 10.5710/AMGH.v49i3(519).
  28. Gilmore, C.W. 1936. Osteology of Apatosaurus, with special reference to specimens in the Carnegie Museum. Memoirs of the Carnegie Museum, 11, 175-300.
  29. Gonzalez, R., Gallina, P.A. & Cerda, I.A. 2017. Multiple paleopathologies in the dinosaur Bonitasaura salgadoi (Sauropoda: Titanosauria) from the Upper Cretaceous of Patagonia, Argentina. Cretaceous Research, 79, 159-170; doi: 10.1016/j.cretres.2017.07.013.
  30. González Riga, B.J., Mannion, P.D., Poropat, S.F., Ortiz David, L. & Coria, J.P. 2018. Osteology of the Late Cretaceous Argentinean sauropod dinosaur Mendozasaurus
  31. Prondvai, E., Stein, K.H.W., Ricqlès, A.D.E. & Cubo, J. 2014. Development-based revision of bone tissue classification: the importance of semantics for science. Biological Journal of the Linnean Society, 112, 799-816; doi: 10.1111/bij.12323.
  32. Reid, R.E.H. 1997. Histology of bone and teeths. In: Encyclopedia of Dinosaurs (eds. Currie, P.J. & Padian, K.). Academic Press, San Diego, 329-339.
  33. Rothschild, B.M. & Berman, D.S. 1991. Fusion of caudal vertebrae in Late Jurassic sauropods. Journal of Vertebrate Paleontology, 11, 29-36; doi: 10.1080/02724634.1991.10011373.
  34. Schweitzer, M.H., Horner, J.R., Wittmeyer, J.L. & Horner, J.R. 2005. Gender-specific reproductive tissue in ratites and Tyrannosaurus rex. Science, 308, 1456-1460; doi: 10.1126/science.1112158.
  35. Schweitzer, M.H., Zheng, W., Zanno, L., Werning, S. & Sugiyama, T. 2016. Chemistry supports the identification of gender-specific reproductive tissue in Tyrannosaurus rex. Scientific Reports, 6, 1-10; doi: 10.1038/srep23099.
  36. Starck, J.M. & Chinsamy, A. 2002. Bone microstructure and developmental plasticity in birds and other dinosaurs. Journal of Morphology, 254, 232-246; doi: 10.1002/ jmor.10029.
  37. Surmik, D., Szczygielski, T., Katarzyna, J. & Rothschild, B.M. 2018. Tuberculosis-like respiratory infection in 245-million-year-old marine reptile suggested by bone pathologies. Royal Society Open Science, 5, 180225; doi: 10.1098/rsos.180225.
  38. Tschopp, E., Wings, O., Frauenfelder, T. & Rothschild, B.M. 2016. Pathological phalanges in a camarasaurid sauropod dinosaur and implications on behaviour. Acta Palaeontologica Polonica, 61, 125-134; doi: 10.4202/ app.00119.2014.
  39. Waskow, K. & Mateus, O. 2017. Dorsal rib histology of dinosaurs and a crocodile from western Portugal: Skeletochronological implications on age determination and life history traits. Comptes Rendus Palevol, 16, 425-439; doi: 10.1016/j.crpv.2017.01.003.
  40. Waskow, K. & Sander, P.M. 2014. Growth record and histological variation in the dorsal ribs of Camarasaurus sp. (Sauropoda). Journal of Vertebrate Paleontology, 34, 852-869; doi: 10.1080/02724634.2014.840645.
  41. Wedel, M. & Sanders, R.K. 2002. Osteological correlates of cervical musculature in Aves and Sauropoda (Dinosauria, Saurischia), with comments on the cervical ribs of Apatosaurus. PaleoBios, 22, 1-6.
  42. Weska, R.K. 2006. Uma síntese do Cretáceo Superior mato- grossense. Revista Geociências, 25, 71-81.
  43. Woodruff, D.C., Fowler, D.W. & Horner, J.R. 2017. A new multi-faceted framework for deciphering diplodocid ontogeny. Palaeontologia Electronica, 20.3.43A, 1-53; doi: 10.26879/674.