Initiation of Polyene Macrolide Biosynthesis: Interplay between Polyketide Synthase Domains and Modules as Revealed via Domain Swapping, Mutagenesis, and Heterologous Complementation (original) (raw)

Site-specific Mutagenesis and Domain Substitutions in the Loading Module of the Nystatin Polyketide Synthase, and Their Effects on Nystatin Biosynthesis in Streptomyces noursei

Journal of Biological Chemistry, 2003

The loading module for the nystatin polyketide synthase (PKS) in Streptomyces noursei is represented by the NysA protein composed of a ketosynthase (KS S), acyltransferase, dehydratase, and an acyl carrier protein. The absolute requirement of this protein for initiation of nystatin biosynthesis was demonstrated by the in-frame deletion of the nysA gene in S. noursei. The role of the NysA KS S domain, however, remained unclear, since no data on the significance of the "active site" serine (Ser-170) residue in the loading modules of type I PKSs were available. Site-specific mutagenesis of Ser-170 both in the wild-type NysA and in the hybrid loading module containing malonyl-specific acyltransferase domain from the extender module had no effect on nystatin biosynthesis. A second mutation (S413N) of the NysA KS S domain was discovered that completely abolished the ability of the hybrids to restore nystatin biosynthesis, presumably by affecting the ability of the resulting proteins to catalyze the required substrate decarboxylation. In contrast, NysA and its Ser-170 mutants bearing the same S413N mutation were able to restore nystatin production to significant levels, probably by using acetyl-CoA as a starter unit. Together, these data suggest that the KS S domain of NysA differs from the KS Q domains found in the loading modules of several PKS type I systems in that the active site residue is not significant for its activity.

Identification of a gene cluster for antibacterial polyketide-derived antibiotic biosynthesis in the nystatin producer Streptomyces noursei ATCC 11455

Microbiology (Reading, England), 2000

Streptomyces noursei ATCC 11455 produces the antifungal polyene antibiotic nystatin containing the deoxysugar moiety mycosamine. Part of the deoxythymidyl diphosphate (TDP)-glucose dehydratase gene (gdhA) known to be involved in deoxysugar biosynthesis was amplified by PCR from genomic DNA of S. noursei ATCC 11455. A gene library for S. noursei was made and screened with the gdhA probe. Several overlapping phage clones covering about 30 kb of the S. noursei genome were physically mapped. A partial DNA sequencing analysis of this region resulted in the identification of several putative genes typical of macrolide antibiotic biosynthetic gene clusters. A gene-transfer system for 5. noursei has been established, and gene deletion or disruption experiments within the putative biosynthetic gene cluster were performed. All of the knock-out mutants retained the ability to produce nystatin, suggesting that the identified gene cluster is not involved in biosynthesis of this antibiotic. Cultu...

Hexaene Derivatives of Nystatin Produced as a Result of an Induced Rearrangement within the nysC Polyketide Synthase Gene in S. noursei ATCC 11455

Chemistry & Biology, 2002

N-7491 Trondheim embedded in the PKSs. Further modification of the polyene macrolactone ring via the action of monooxygen-2 SINTEF Applied Chemistry SINTEF ases and glycosyltransferases leads to the formation of a fully biologically active molecule [4]. Recently, a first N-7034 Trondheim 3 Institute for Cancer Research report on the engineered biosynthesis of a novel derivative of the polyene antibiotic pimaricin has been pub-and Molecular Biology Norwegian University of Science and Technology lished [5]. The data presented in this work confirm the importance of post-PKS modifications for the biological N-7489 Trondheim Norway activity of polyenes and provide further insight into the structure-function relationship of the polyene antibiotics. The properties of PKSs involved in the biosynthesis Summary of macrolide antibiotics make it possible to change their structure and embedded enzymatic activities in such Genetic manipulation of the polyketide synthase (PKS) a way that new compounds with predictable chemical gene nysC involved in the biosynthesis of the tetraene structures can be produced [6]. From this point of view, antifungal antibiotic nystatin yielded a recombinant the PKSs involved in the biosynthesis of polyene macrostrain producing hexaene nystatin derivatives. Analylide antibiotics are excellent targets for manipulation sis of one such compound, S48HX, by LC-MS/MS sugthat may provide novel antifungal agents with improved gested that it comprises a 36-membered macrolacpharmacological properties. tone ring completely decorated by the post-PKS

Improved Antifungal Polyene Macrolides via Engineering of the Nystatin Biosynthetic Genes in Streptomyces noursei

Chemistry & Biology, 2008

Seven polyene macrolides with alterations in the polyol region and exocyclic carboxy group were obtained via genetic engineering of the nystatin biosynthesis genes in Streptomyces noursei. In vitro analyses of the compounds for antifungal and hemolytic activities indicated that combinations of several mutations caused additive improvements in their activity-toxicity properties. The two best analogs selected on the basis of in vitro data were tested for acute toxicity and antifungal activity in a mouse model. Both analogs were shown to be effective against disseminated candidosis, while being considerably less toxic than amphotericin B. To our knowledge, this is the first report on polyene macrolides with improved in vivo pharmacological properties obtained by genetic engineering. These results indicate that the engineered nystatin analogs can be further developed into antifungal drugs for human use.

In Vivo Analysis of the Regulatory Genes in the Nystatin Biosynthetic Gene Cluster of Streptomyces noursei ATCC 11455 Reveals Their Differential Control Over Antibiotic Biosynthesis

Journal of Bacteriology, 2004

Six putative regulatory genes are located at the flank of the nystatin biosynthetic gene cluster in Streptomyces noursei ATCC 11455. Gene inactivation and complementation experiments revealed that nysRI, nysRII, nysRIII, and nysRIV are necessary for efficient nystatin production, whereas no significant roles could be demonstrated for the other two regulatory genes. To determine the in vivo targets for the NysR regulators, chromosomal integration vectors with the xylE reporter gene under the control of seven putative promoter regions upstream of the nystatin structural and regulatory genes were constructed. Expression analyses of the resulting vectors in the S. noursei wild-type strain and regulatory mutants revealed that the four regulators differentially affect certain promoters. According to these analyses, genes responsible for initiation of nystatin biosynthesis and antibiotic transport were the major targets for regulation. Data from cross-complementation experiments showed that nysR genes could in some cases substitute for each other, suggesting a functional hierarchy of the regulators and implying a cascade-like mechanism of regulation of nystatin biosynthesis.

Analysis of the Mycosamine Biosynthesis and Attachment Genes in the Nystatin Biosynthetic Gene Cluster of Streptomyces noursei ATCC 11455

Applied and Environmental Microbiology, 2007

The polyene macrolide antibiotic nystatin produced by Streptomyces noursei contains a deoxyaminosugar mycosamine moiety attached to the C-19 carbon of the macrolactone ring through the ␤-glycosidic bond. The nystatin biosynthetic gene cluster contains three genes, nysDI, nysDII, and nysDIII, encoding enzymes with presumed roles in mycosamine biosynthesis and attachment as glycosyltransferase, aminotransferase, and GDP-mannose dehydratase, respectively. In the present study, the functions of these three genes were analyzed. The recombinant NysDIII protein was expressed in Escherichia coli and purified, and its in vitro GDP-mannose dehydratase activity was demonstrated. The nysDI and nysDII genes were inactivated individually in S. noursei, and analyses of the resulting mutants showed that both genes produced nystatinolide and 10-deoxynystatinolide as major products. Expression of the nysDI and nysDII genes in trans in the respective mutants partially restored nystatin biosynthesis in both cases, supporting the predicted roles of these two genes in mycosamine biosynthesis and attachment. Both antifungal and hemolytic activities of the purified nystatinolides were shown to be strongly reduced compared to those of nystatin, confirming the importance of the mycosamine moiety for the biological activity of nystatin.

Identification of a gene cluster for antibacterial polyketide-derived antibiotic biosynthesis in the nystatin producer Streptomyces noursei ATCC 11455 The GenBank accession numbers for the sequences reported in this paper are AF071512 for ORF1, AF071513 for ORF2, AF071514 for ORF3, AF071515 for O...

Microbiology, 2000

Streptomyces noursei ATCC 11455 produces the antifungal polyene antibiotic nystatin containing the deoxysugar moiety mycosamine. Part of the deoxythymidyl diphosphate (TDP)-glucose dehydratase gene (gdhA) known to be involved in deoxysugar biosynthesis was amplified by PCR from genomic DNA of S. noursei ATCC 11455. A gene library for S. noursei was made and screened with the gdhA probe. Several overlapping phage clones covering about 30 kb of the S. noursei genome were physically mapped. A partial DNA sequencing analysis of this region resulted in the identification of several putative genes typical of macrolide antibiotic biosynthetic gene clusters. A gene-transfer system for S. noursei has been established, and gene deletion or disruption experiments within the putative biosynthetic gene cluster were performed. All of the knockout mutants retained the ability to produce nystatin, suggesting that the identified gene cluster is not involved in biosynthesis of this antibiotic. Culture extracts from the wild-type strain and three knockout mutants were analysed by TLC followed by a bioassay against Micrococcus luteus. Two antibacterial compounds were found to be synthesized by the wild-type strain while only one was produced by the mutants. This provided evidence for the involvement of the identified gene cluster in the biosynthesis of a presumably novel antibacterial macrolide antibiotic in S. noursei.