A Hybrid Method of 1D-CNN and Machine Learning Algorithms for Breast Cancer Detection (original) (raw)

2024, Mağallaẗ baġdād li-l-ʿulūm

Sign up to get access to over 50M papers

Sign up for access to the world's latest research

Benign and malignant breast tumors classification based on region growing and CNN segmentation

Expert Systems with Applications, 2015

Breast cancer is regarded as one of the most frequent mortality causes among women. As early detection of breast cancer increases the survival chance, creation of a system to diagnose suspicious masses in mammograms is important. In this paper, two automated methods are presented to diagnose mass types of benign and malignant in mammograms. In the first proposed method, segmentation is done using an automated region growing whose threshold is obtained by a trained artificial neural network (ANN). In the second proposed method, segmentation is performed by a cellular neural network (CNN) whose parameters are determined by a genetic algorithm (GA). Intensity, textural, and shape features are extracted from segmented tumors. GA is used to select appropriate features from the set of extracted features. In the next stage, ANNs are used to classify the mammograms as benign or malignant. To evaluate the performance of the proposed methods different classifiers (such as random forest, naïve Bayes, SVM, and KNN) are used. Results of the proposed techniques performed on MIAS and DDSM databases are promising. The obtained sensitivity, specificity, and accuracy rates are 96.87%, 95.94%, and 96.47%, respectively.

Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks

IEEE Access, 2018

In recent years, the classification of breast cancer has been the topic of interest in the field of Healthcare informatics, because it is the second main cause of cancer-related deaths in women. Breast cancer can be identified using a biopsy where tissue is removed and studied under microscope. The diagnosis is based on the qualification of the histopathologist, who will look for abnormal cells. However, if the histopathologist is not well-trained, this may lead to wrong diagnosis. With the recent advances in image processing and machine learning, there is an interest in attempting to develop a reliable pattern recognition based systems to improve the quality of diagnosis. In this paper, we compare two machine learning approaches for the automatic classification of breast cancer histology images into benign and malignant and into benign and malignant sub-classes. The first approach is based on the extraction of a set of handcrafted features encoded by two coding models (bag of words and locality constrained linear coding) and trained by support vector machines, while the second approach is based on the design of convolutional neural networks. We have also experimentally tested dataset augmentation techniques to enhance the accuracy of the convolutional neural network as well as ''handcrafted features + convolutional neural network'' and ''convolutional neural network features + classifier'' configurations. The results show convolutional neural networks outperformed the handcrafted feature based classifier, where we achieved accuracy between 96.15% and 98.33% for the binary classification and 83.31% and 88.23% for the multi-class classification.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.