Study of the Influence of PCL on the In Vitro Degradation of Extruded PLA Monofilaments and Melt-Spun Filaments (original) (raw)

Mechanical study of PLA–PCL fibers during in vitro degradation

Journal of the Mechanical Behavior of Biomedical Materials, 2011

The aliphatic polyesters are widely used in biomedical applications since they are susceptible to hydrolytic and/or enzymatic chain cleavage, leading to α-hydroxyacids, generally metabolized in the human body. This is particularly useful for many biomedical applications, particularly, for temporary mechanical supports in regenerative medical devices.

Experimental Degradation Characterization of Pla-PCL, Pga-PCL, Pdo and Pga Fibres

Aliphatic polyesters, such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL) and polydioxone (PDO), have been commonly used in biodegradable products. In this experimental study, fibres of PLA-PCL, PGA-PCL, PDO and PGA were characterized in terms of their degradation rate under three different environments (water, NaCl and PBS).

Material Characterization of PCL:PLLA Electrospun Fibers Following Six Months Degradation In Vitro

Polymers

The annulus fibrosus—one of the two tissues comprising the intervertebral disc—is susceptible to injury and disease, leading to chronic pain and rupture. A synthetic, biodegradable material could provide a suitable scaffold that alleviates this pain and supports repair through tissue regeneration. The transfer of properties, particularly biomechanical, from scaffold to new tissue is essential and should occur at the same rate to prevent graft failure post-implantation. This study outlines the effect of hydrolytic degradation on the material properties of a novel blend of polycaprolactone and poly(lactic acid) electrospun nanofibers (50:50) over a six-month period following storage in phosphate buffered saline solution at 37 °C. As expected, the molecular weight distribution for this blend decreased over the 180-day period. This was in line with significant changes to fiber morphology, which appeared swollen and merged following observation using Scanning Electron Microscopy. Similar...

Degradation and viscoelastic properties of PLA-PCL, PGA-PCL, PDO and PGA fibres

Materials Science Forum, 2010

Aliphatic polyesters, such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polydioxone (PDO) and others, have been commonly used in biodegradable products. Hydrolytic and/or enzymatic chain cleavage of these materials leads to αhydroxyacids, which, in most cases, are ultimately assimilated in human body or in a composting environment. However, each of these has some shortcomings, in terms of mechanical properties and degradation time, which restrict its applications. The combination of these materials, by copolymerization or blending, enables a range of mechanical properties and degradation rates. These are extremely promising approaches which can improve or tune the original properties of the polymers. A composite solution of several materials with different degradation rates also enables tuning the rate of degradation of a device and the mechanical properties. After immersion of an aliphatic polyester device, diffusion occurs very rapidly compared to hydrolysis. Therefore, it is usually considered that hydrolysis of ester bonds starts homogeneously and has traditionally been modelled according to a first order kinetics. In this experimental study, fibres of PLA-PCL, PGA-PCL, PDO and PGA, with two different dimensions, were characterized in terms of their degradation rate under three different environments (water, NaCl and PBS) at constant temperature (37ºC). Weights and mechanical properties were measured after six different degradation stages. Stages durations were different depending on materials, according to the predicted degradation times. As other thermoplastics, they are viscoelastic materials. In this experimental study mechanical properties of fibres were compared at different strain rates.

Experiment and modelling of the strain-rate-dependent response during in vitro degradation of PLA fibres

SN Applied Sciences, 2020

Polylactic acid (PLA) fibres present, in their pristine state, a strain-rate-dependent behaviour. Their mechanical properties evolve during in vitro biodegradation. Tensile tests of PLA fibres are performed at five different strain rates 0.0001, 0.001, 0.01, 0.05 and 0.1/s and at seven degradation stages, 0, 20, 40, 60, 90, 120 and 150 days in a phosphate buffer solution at constant temperature at 37 °C. The mechanical response is modelled using a modified three-element standard solid model proposed for polymers under finite deformations range. Observations on experimental data lead to the conclusion that the viscous parameters η 1 and η 2 are strain rate dependent, and they vary from 10,762/3202 (N/m s) at the lowest strain rate of 0.0001/s, and 12.2/9.1 (N/m s) at the highest strain rate of 0.1/s for η 1 and η 2 , respectively, thus, depicting the shear-thinning phenomena with the increase in strain rate. Whereas stiffness parameters C 1 and C 2 are degradation dependent, they vary from 21.6/13.7 (N/m) for undegraded PLA fibres and 9.7/5.4 (N/m) for 150 days degraded PLA fibres for C 1 and C 2 , respectively. Decay of stiffness parameters during biodegradation follows an exponential law. The model will be useful to design and develop new fibrous structures for ligament augmentation devices. It could contribute to develop better devices with improved mechanical performance helping those patients in need to repair the ligament tissue.

In Vitro Degradation of Plasticized PLA Electrospun Fiber Mats: Morphological, Thermal and Crystalline Evolution

Polymers, 2020

In the present work, fiber mats of poly(lactic acid), PLA, plasticized by different amounts of oligomer lactic acid, OLA, were obtained by electrospinning in order to investigate their long term hydrolytic degradation. This was performed in a simulated body fluid for up to 352 days, until the complete degradation of the samples is reached. The evolution of the plasticized electrospun mats was followed in terms of morphological, thermal, chemical and crystalline changes. Mass variation and water uptake of PLA-based electrospun mats, together with pH stability of the immersion media, were also studied during the in vitro test. The results showed that the addition of OLA increases the hydrolytic degradation rate of PLA electrospun fiber mats. Moreover, by adding different amounts of OLA, the time of degradation of the electrospun fiber mats can be modulated over the course of a year. Effectively, by increasing the amount of OLA, the diameter of the electrospun fibers decreases more rap...

Mechanical properties and cytotoxicity of PLA/PCL films

Biomedical Engineering Letters, 2018

Thermodynamically immiscible poly(lactic acid) (PLA) and poly(e-caprolactone) (PCL) were blended and solution-cast by adding the 3% compatibilizer (tributyl citrate, TBC) of the PCL weight. In the PLA/PCL composition range of 99/1-95/ 5 wt%, mechanical properties of the PLA/PCL films with TBC were always superior to those of the films without TBC. The tensile strength of 42.9 ± 3.5 MPa and the elongation at break of 10.3 ± 2.7% were observed for the 93/7 PLA/PCL films without TBC, indicating that PCL addition is effective for strength and ductility. However, the tensile strength of 54.1 ± 3.4 MPa and the elongation at break of 8.8 ± 1.8% were found for the 95/5 PLA/PCL with TBC, indicating that the effect of co-addition of PCL and TBC on mechanical properties of the films is more pronounced. No cytotoxicity was observed for the PLA/PCL films regardless of TBC addition.

Acceleration of Electrospun PLA Degradation by Addition of Gelatin

International Journal of Molecular Sciences

Biocompatible polyesters are widely used in biomedical applications, including sutures, orthopedic devices, drug delivery systems, and tissue engineering scaffolds. Blending polyesters with proteins is a common method of tuning biomaterial properties. Usually, it improves hydrophilicity, enhances cell adhesion, and accelerates biodegradation. However, inclusion of proteins to a polyester-based material typically reduces its mechanical properties. Here, we describe the physicochemical properties of an electrospun polylactic acid (PLA)–gelatin blend with a 9:1 PLA:gelatin ratio. We found that a small content (10 wt%) of gelatin does not affect the extensibility and strength of wet electrospun PLA mats but significantly accelerates their in vitro and in vivo decomposition. After a month, the thickness of PLA–gelatin mats subcutaneously implanted in C57black mice decreased by 30%, while the thickness of the pure PLA mats remained almost unchanged. Thus, we suggest the inclusion of a sma...