Varying Annotations in the Steps of the Visual Analysis (original) (raw)

Uploaded (2025) | Journal: ArXiv

Abstract

Annotations in Visual Analytics (VA) have become a common means to support the analysis by integrating additional information into the VA system. That additional information often depends on the current process step in the visual analysis. For example, the data preprocessing step has data structuring operations while the data exploration step focuses on user interaction and input. Describing suitable annotations to meet the goals of the different steps is challenging. To tackle this issue, we identify individual annotations for each step and outline their gathering and design properties for the visual analysis of heterogeneous clinical data. We integrate our annotation design into a visual analysis tool to show its applicability to data from the ophthalmic domain. In interviews and application sessions with experts we asses its usefulness for the analysis of patients with different medications.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (17)

  1. Micheline Elias and Anastasia Bezerianos. "Annotating BI visu- alization dashboards". In: Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems -CHI '12. ACM Press, 2012. doi: 10.1145/2207676.2208288.
  2. D.P. Groth and K. Streefkerk. "Provenance and Annotation for Visual Exploration Systems". In: IEEE Transactions on Visu- alization and Computer Graphics 12.6 (Nov. 2006), pp. 1500- 1510. doi: 10.1109/tvcg.2006.101.
  3. Theresia Gschwandtner et al. "A Taxonomy of Dirty Time- Oriented Data". In: Multidisciplinary Research and Practice for Information Systems. Ed. by Gerald Quirchmayr et al. Berlin, Heidelberg: Springer, 2012, pp. 58-72.
  4. Jeffrey Heer, Fernanda B. Viegas, and Martin Wattenberg. "Voy- agers and Voyeurs: Supporting Asynchronous Collaborative In- formation Visualization". In: Proceedings of the SIGCHI Con- ference on Human Factors in Computing Systems. CHI '07. San Jose, California, USA: ACM, 2007, pp. 1029-1038. isbn: 978-1- 59593-593-9. doi: 10.1145/1240624.1240781.
  5. H. R. Lipford et al. "Helping users recall their reasoning pro- cess". In: 2010 IEEE Symposium on Visual Analytics Science and Technology. Oct. 2010, pp. 187-194. doi: 10.1109/VAST. 2010.5653598.
  6. Nina McCurdy, Julie Gerdes, and Miriah Meyer. "A Framework for Externalizing Implicit Error Using Visualization". In: IEEE Transactions on Visualization and Computer Graphics (2018), pp. 1-1. doi: 10.1109/tvcg.2018.2864913.
  7. Narges Mahyar, Ali Sarvghad, and Melanie Tory. "Note-taking in co-located collaborative visual analytics: Analysis of an obser- vational study". In: Information Visualization 11.3 (July 2012), pp. 190-204. doi: 10.1177/1473871611433713.
  8. N. Mahyar and M. Tory. "Supporting Communication and Coor- dination in Collaborative Sensemaking". In: IEEE Transactions on Visualization and Computer Graphics 20.12 (Dec. 2014), pp. 1633- 1642. issn: 1077-2626. doi: 10.1109/TVCG.2014.2346573.
  9. Dominik Sacha et al. "Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis". In: IEEE Trans- actions on Visualization and Computer Graphics 23.1 (Jan. 2017), pp. 241-250. issn: 1077-2626. doi: 10.1109/tvcg.2016.2598495.
  10. Roser Sauri. "Building FactBank or How to Annotate Event Factuality One Step at a Time". In: Handbook of Linguistic An- notation. Ed. by Nancy Ide and James Pustejovsky. Dordrecht: Springer Netherlands, 2017, pp. 905-939. isbn: 978-94-024-0881- 2. doi: 10.1007/978-94-024-0881-2_34.
  11. C. Schmidt et al. "Combining Visual Cleansing and Exploration for Clinical Data". In: 2019 IEEE Workshop on Visual Analytics in Healthcare (VAHC). Oct. 2019, pp. 25-32. doi: 10 . 1109 / VAHC47919.2019.8945034.
  12. Christoph Schmidt, Paul Rosenthal, and Heidrun Schumann. "Annotations as a Support for Knowledge Generation -Sup- porting Visual Analytics in the Field of Ophthalmology". In: Proceedings of the 13 th International Joint Conference on Com- puter Vision, Imaging and Computer Graphics Theory and Ap- plications. SCITEPRESS -Science and Technology Publications, 2018. doi: 10.5220/0006615902640272.
  13. K. M. Shabana and J. Wilson. "A novel method for automatic discovery, annotation and interactive visualization of prominent clusters in mobile subscriber datasets". In: 2015 IEEE 9 th In- ternational Conference on Research Challenges in Information Science (RCIS). May 2015, pp. 127-132. doi: 10.1109/RCIS. 2015.7128872.
  14. Pierre Vanhulst et al. "Designing a Classification for User-authored Annotations in Data Visualization". In: Proceedings of the 13 th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SCITEPRESS -Science and Technology Publications, 2018. doi: 10 . 5220 / 0006613700850096.
  15. Wesley Willett et al. "CommentSpace: Structured Support for Collaborative Visual Analysis". In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI '11. Vancouver, BC, Canada: ACM, 2011, pp. 3131-3140. isbn: 978- 1-4503-0228-9. doi: 10.1145/1978942.1979407.
  16. J. Zhao et al. "Annotation Graphs: A Graph-Based Visualiza- tion for Meta-Analysis of Data Based on User-Authored Annota- tions". In: IEEE Transactions on Visualization and Computer Graphics 23.1 (Jan. 2017), pp. 261-270. issn: 1077-2626. doi: 10.1109/TVCG.2016.2598543.
  17. Jian Zhao et al. "Supporting Handoff in Asynchronous Col- laborative Sensemaking Using Knowledge-Transfer Graphs". In: IEEE Transactions on Visualization and Computer Graphics 24.1 (Jan. 2018), pp. 340-350. doi: 10 . 1109 / tvcg . 2017 . 2745279.