A novel brain metastases model developed in immunodeficient rats closely mimics the growth of metastatic brain tumours in patients (original) (raw)

Patient-derived models of brain metastases recapitulate the histopathology and biology of human metastatic cancers

2020

ABSTRACTPurposeDissemination of cancer cells from primary tumors to the brain is observed in the great majority of cancer patients, contributing to increased morbidity and being the main cause of death. Most mechanistic and preclinical studies have relied on aggressive cancer cell lines, which fail to represent tumor heterogeneity and are unsuitable to validate therapies due to fast cancer progressionin vivo.Experimental designWe established a unique library of subcutaneous and intracardiac patient-derived xenografts (PDXs) of brain metastases (BMs) from eight distinct primary tumor origins. Cancer progression in mice was compared to the matched patient clinical outcome, metastatic dissemination pattern and histopathological features. Preclinical studies with FDA approved drugs were performed.ResultsIn vivotumor formation of flank-implanted BMs correlated with patients’ poor survival and serial passaging increased tumor aggressiveness. Subcutaneous xenografts originated spontaneous ...

In vivo animal models for studying brain metastasis: value and limitations

Clinical & Experimental Metastasis, 2013

Brain metastasis is associated with a particular poor prognosis. Novel insight into the brain metastatic process is therefore warranted. Several preclinical models of brain tumor metastasis have been developed during the last 60 years, and they have in part revealed some of the mechanisms underlying the metastatic process. This review discusses mechanisms of brain metastasis with a key focus of the development of animal model systems. This includes the use of rodent, syngeneic brain metastasis models (spontaneous, chemically induced and genetically engineered models) and human xenotransplantation models (ectopic inoculation and orthotopic models). Current information indicates that none of these fully reflect tumor development seen in patients with metastatic disease. The various model systems used, however, have provided important insight into specific mechanisms of the metastatic process related to the brain. By combining the knowledge obtained from animal models, new important information on the molecular mechanisms behind metastasis will be obtained, leading to the future development of new therapeutic strategies.

The molecular biology of brain metastasis

Journal of Oncology, 2012

Metastasis to the central nervous system (CNS) remains a major cause of morbidity and mortality in patients with systemic cancers. Various crucial interactions between the brain environment and tumor cells take place during the development of the cancer at its new location. The rapid expansion in molecular biology and genetics has advanced our knowledge of the underlying mechanisms involved, from invasion to final colonization of new organ tissues. Understanding the various events occurring at each stage should enable targeted drug delivery and individualized treatments for patients, with better outcomes and fewer side effects. This paper summarizes the principal molecular and genetic mechanisms that underlie the development of brain metastasis (BrM).

Review Molecular Biology of Brain Metastasis

2014

Abstract: Metastasis to the central nervous system (CNS) remains a major cause of morbidity and mortality in patients with systemic cancer. As the length of survival in patients with systemic cancer improves, thanks to multimodality therapies, focusing on metastases to the CNS becomes of paramount importance. Unique interactions between the brain’s micro-environment, blood-brain barrier, and tumor cells are hypothesized to promote distinct molecular features in CNS metastases that may require tailored therapeutic approaches. This review will focus on the pathophysiology, epigenetics, and immunobiology of brain metastases in order to understand the metastatic cascade. Cancer cells escape the primary tumor, intravasate into blood vessels, survive the hematogenous dissemination to the CNS, arrest in brain capillaries, extravasate, proliferate, and develop angiogenic abilities to establish metastases. Molecular biology, genetics, and epigenetics are rapidly expanding, enabling us to adv...

Pathobiology of brain metastases

Journal of Clinical Pathology, 2005

Brain metastasis is a major cause of systemic cancer morbidity and mortality. Many factors participate in the development and maintenance of brain metastases. The survival of the metastasis depends upon crucial interactions between tumour cells and the brain microenvironment during its development at the new site. This review focuses on the pathobiological mechanisms involved in the establishment and regulation of brain metastases. Developments in molecular biology have vastly expanded our knowledge about the mechanisms of invasion, proliferation, metastatic cell signalling, and angiogenesis in brain metastases. Advances in this understanding of the pathobiology of brain metastasis may lead to novel targeted treatment paradigms and a better prognosis for patients with brain metastatic disease.

Molecular events of brain metastasis

Neurosurgical Focus, 2007

✓The brain is a privileged site of systemic cancer metastasis. The stages of the metastatic journey from the periphery to the brain are driven by molecular events that tie the original site of disease to the distant host tissue. This preference is not arbitrary but rather a directed phenomenon that includes such critical steps as angiogenesis and the preparation of the premetastatic niche. It appears that the connection between naïve brain and cancer cells is made in advance of any metastatic breach of the blood–brain barrier. This contributes to the preferential homing of cancer cells to the brain. Delineation of the guidance mechanisms and elements that influence cancer cell motility and dormancy are important for the advancement of treatment modalities aimed at the remediation of this devastating disease.

A reproducible brain tumour model established from human glioblastoma biopsies

BMC Cancer, 2009

Background: Establishing clinically relevant animal models of glioblastoma multiforme (GBM) remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates.